Physical properties of neutral gas in M31 and the Galaxy

1992 ◽  
Vol 386 ◽  
pp. 120 ◽  
Author(s):  
Robert Braun ◽  
Rene A. M. Walterbos
2008 ◽  
Vol 4 (S256) ◽  
pp. 325-336
Author(s):  
Christopher J. Evans

AbstractThe past decade has witnessed impressive progress in our understanding of the physical properties of massive stars in the Magellanic Clouds, and how they compare to their cousins in the Galaxy. I summarise new results in this field, including evidence for reduced mass-loss rates and faster stellar rotational velocities in the Clouds, and their present-day compositions. I also discuss the stellar temperature scale, emphasizing its dependence on metallicity across the entire upper-part of the Hertzsprung-Russell diagram.


2018 ◽  
Vol 609 ◽  
pp. A40 ◽  
Author(s):  
B. Epinat ◽  
T. Contini ◽  
H. Finley ◽  
L. A. Boogaard ◽  
A. Guérou ◽  
...  

We report the discovery of a 104 kpc2 gaseous structure detected in [O ii]λλ3727, 3729 in an over-dense region of the COSMOS-Gr30 galaxy group at z ~ 0.725 with deep MUSE Guaranteed Time Observations. We estimate the total amount of diffuse ionised gas to be of the order of (~5 ± 3) × 1010 M⊙ and explore its physical properties to understand its origin and the source(s) of the ionisation. The MUSE data allow the identification of a dozen group members that are embedded in this structure through emission and absorption lines. We extracted spectra from small apertures defined for both the diffuse ionised gas and the galaxies. We investigated the kinematics and ionisation properties of the various galaxies and extended gas regions through line diagnostics (R23, O32, and [O iii]/Hβ) that are available within the MUSE wavelength range. We compared these diagnostics to photo-ionisation models and shock models. The structure is divided into two kinematically distinct sub-structures. The most extended sub-structure of ionised gas is likely rotating around a massive galaxy and displays filamentary patterns that link some galaxies. The second sub-structure links another massive galaxy that hosts an active galactic nucleus (AGN) to a low-mass galaxy, but it also extends orthogonally to the AGN host disc over ~ 35 kpc. This extent is likely ionised by the AGN itself. The location of small diffuse regions in the R23 vs. O32 diagram is compatible with photo-ionisation. However, the location of three of these regions in this diagram (low O32, high R23) can also be explained by shocks, which is supported by their high velocity dispersions. One edge-on galaxy shares the same properties and may be a source of shocks. Regardless of the hypothesis, the extended gas seems to be non-primordial. We favour a scenario where the gas has been extracted from galaxies by tidal forces and AGN triggered by interactions between at least the two sub-structures.


1989 ◽  
Vol 120 ◽  
pp. 416-423
Author(s):  
Bart P. Wakker

For almost three decades neutral hydrogen moving at velocities unexplicable by galactic rotation has been observed. These so-called high-velocity clouds (HVCs) have been invoked as evidence for infall of neutral gas to the galaxy, as manifestations of a galactic fountain, as energy source for the formation of supershells, etc. No general consensus about their origin has presently been reached. However, it is becoming clear that no single model will suffice to explain all HVCs. A number of clouds may consist of material streaming toward the galactic center, as Mirabel (this conference) has advocated for several years, though their origin still remains unclear. A better understanding is mainly hampered by the fact that the distance remains unknown. An overview of the current status of the distance problem is given by van Woerden elsewhere in this volume.


2019 ◽  
Vol 628 ◽  
pp. A122 ◽  
Author(s):  
P. Serra ◽  
F. M. Maccagni ◽  
D. Kleiner ◽  
W. J. G. de Blok ◽  
J. H. van Gorkom ◽  
...  

We present MeerKAT observations of neutral hydrogen gas (H I) in the nearby merger remnant NGC 1316 (Fornax A), the brightest member of a galaxy group which is falling into the Fornax cluster. We find H I on a variety of scales, from the galaxy centre to its large-scale environment. For the first time we detect H I at large radii (70–150 kpc in projection), mostly distributed on two long tails associated with the galaxy. Gas in the tails dominates the H I mass of NGC 1316: 7 × 108 M⊙– 14 times more than in previous observations. The total H I mass is comparable to the amount of neutral gas found inside the stellar body, mostly in molecular form. The H I tails are associated with faint optical tidal features thought to be the remnant of a galaxy merger occurred a few billion years ago. They demonstrate that the merger was gas-rich. During the merger, tidal forces pulled some gas and stars out to large radii, where we now detect them in the form of optical tails and, thanks to our new data, H I tails; while torques caused the remaining gas to flow towards the centre of the remnant, where it was converted into molecular gas and fuelled the starburst revealed by the galaxy’s stellar populations. Several of the observed properties of NGC 1316 can be reproduced by a ∼10:1 merger between a dominant, gas-poor early-type galaxy and a smaller, gas-rich spiral occurred 1–3 Gyr ago, likely followed by subsequent accretion of satellite galaxies.


2014 ◽  
Vol 10 (S313) ◽  
pp. 289-293
Author(s):  
E. K. Mahony ◽  
J. B. R. Oonk ◽  
R. Morganti ◽  
T. A. Oosterloo ◽  
B. H. C. Emonts ◽  
...  

AbstractThe tight correlations observed between galaxies and their SMBH provides compelling evidence that the evolution of the galaxy and its central black hole are strongly linked. This is generally attributed to feedback mechanisms which, according to simulations, often take the form of outflows of gas, quenching star formation in the host galaxy and halting accretion onto the central black hole. While there are a number of plausible ways that outflows could be produced, recent results have shown that in some cases radio jets could be responsible for driving fast outflows of gas. One such example is seen in the nearby radio galaxy 3C293. In this talk I will present results from JVLA radio observations where we detect fast outflows (~1200 km/s) of neutral gas which are being driven by the radio-jet approximately 0.5 kpc from the central core, providing direct evidence for jet-ISM interaction. This is accompanied with recent IFU observations showing that ionised gas outflows are also being driven by the radio jet. Pinpointing the location of these outflows enables us to derive crucial parameters, such as the mass outflow rates and kinetic energy involved, which we can compare to predictions from galaxy evolution simulations.


2009 ◽  
Vol 5 (H15) ◽  
pp. 816-816
Author(s):  
T. Prusti

AbstractGaia is a space astrometry mission, a broad survey project following the measurement and operational principles of Hipparcos. It will help solving one of the most difficult yet deeply fundamental challenges in modern astronomy: to create an extraordinarily precise three-dimensional map of about one billion stars throughout our Galaxy and beyond. In the process, it will map their three-dimensional motions, which encode the origin and subsequent evolution of the Galaxy. Through comprehensive photometric and spectroscopic classification, it will provide the detailed physical properties of each star observed: characterising their luminosity, temperature, gravity, and elemental composition. This massive stellar census will provide the basic observational data to tackle an enormous range of important problems related to the origin, structure, and evolutionary history of our Galaxy.


2019 ◽  
Vol 489 (1) ◽  
pp. 1099-1109 ◽  
Author(s):  
R Dutta ◽  
R Srianand ◽  
N Gupta

Abstract Using a sample of 38 radio-loud galaxy mergers at z ≤ 0.2, we confirm the high detection rate (∼84 per cent) of H i 21-cm absorption in mergers, which is significantly higher (∼4 times) than in non-mergers. The distributions of the H i column density [$N(\rm{H\,{\small I}}$)] and velocity shift of the absorption with respect to the systemic redshift of the galaxy hosting the radio source in mergers are significantly different from that in non-mergers. We investigate the connection of the nuclear H i gas with various multiwavelength properties of the mergers. While the inferred $N(\rm{H\,{\small I}}$) and gas kinematics do not show strong (i.e. ≥3σ level) correlation with galaxy properties, we find that the incidence and $N(\rm{H\,{\small I}}$) of absorption tend to be slightly higher at smaller projected separations between the galaxy pairs and among the lower stellar mass-radio galaxies. The incidence, $N(\rm{H\,{\small I}}$) and line width of H i absorption increase from the pre-merger to the post-merger stages. The 100 per cent detection rate in post-mergers indicates that the neutral gas in the circumnuclear regions survives the coalescence period and is not yet quenched by the nuclear radio activity.


2020 ◽  
Vol 493 (3) ◽  
pp. 3081-3097 ◽  
Author(s):  
G W Roberts-Borsani ◽  
A Saintonge ◽  
K L Masters ◽  
D V Stark

ABSTRACT Outflows form an integral component in regulating the gas cycling in and out of galaxies, although their impact on the galaxy hosts is still poorly understood. Here we present an analysis of 405 high mass (log M*/M⊙ ≥ 10), star-forming galaxies (excluding AGN) with low inclinations at z ∼ 0, using stacking techniques of the Na D λλ5889, 5895 Å neutral gas tracer in IFU observations from the MaNGA DR15 survey. We detect outflows in the central regions of 78/405 galaxies and determine their extent and power through the construction of stacked annuli. We find outflows are most powerful in central regions and extend out to ∼1Re, with declining mass outflow rates and loading factors as a function of radius. The stacking of spaxels over key galaxy quantities reveals outflow detections in regions of high ΣSFR (≳0.01 M⊙ yr−1 kpc−2) and $\Sigma _{M_{*}}$ (≳107 M⊙ kpc−2) along the resolved main sequence. Clear correlations with ΣSFR suggest it is the main regulator of outflows, with a critical threshold of ∼0.01 M⊙ yr−1 kpc−2 needed to escape the weight of the disc and launch them. Furthermore, measurements of the Hδ and Dn4000 indices reveal virtually identical star formation histories between galaxies with outflows and those without. Finally, through stacking of H i 21 cm observations for a subset of our sample, we find outflow galaxies show reduced H i gas fractions at central velocities compared to their non-detection control counterparts, suggestive of some removal of H i gas, likely in the central regions of the galaxies, but not enough to completely quench the host.


2019 ◽  
Vol 15 (S352) ◽  
pp. 19-19
Author(s):  
Rychard Bouwens

AbstractGravitational lensing from galaxy clusters has great potential for deriving the prevalence and physical properties of ultra-faint galaxies at early times, with recent very impressive results from the Hubble Frontier Fields program. Important issues in deriving the most accurate results are accurate constraints on source sizes and a robust treatment of uncertainties in the magnification models. Using > 3300 z = 2 – 10 galaxies behind the 6 Hubble Frontier Fields clusters and a forwards modeling approach, I describe the efforts of my collaborators and me to map out the galaxy luminosity functions at ∼ − 13 mag from z ∼ 9 to z ∼ 2, i.e, a factor of 1000 below Lå and to the typical luminosity of galaxies suspected to drive cosmic reionization. Additionally, I discuss the constraints we can obtain on the properties of faint sources, in particular their stellar masses, mass-to-light ratios, colors, and stellar population ages. I conclude with a prospective on using cluster lenses to study the distant universe with the James Webb Space Telescope.


Sign in / Sign up

Export Citation Format

Share Document