scholarly journals CORONAL LOOP OSCILLATIONS OBSERVED WITH ATMOSPHERIC IMAGING ASSEMBLY—KINK MODE WITH CROSS-SECTIONAL AND DENSITY OSCILLATIONS

2011 ◽  
Vol 736 (2) ◽  
pp. 102 ◽  
Author(s):  
Markus J. Aschwanden ◽  
Carolus J. Schrijver
2007 ◽  
Vol 3 (S247) ◽  
pp. 288-295
Author(s):  
D. B. Jess ◽  
M. Mathioudakis ◽  
R. Erdélyi ◽  
G. Verth ◽  
R. T. J. McAteer ◽  
...  

AbstractA new method for automated coronal loop tracking, in both spatial and temporal domains, is presented. The reliability of this technique was tested with TRACE 171 Å observations. The application of this technique to a flare-induced kink-mode oscillation, revealed a 3500 km spatial periodicity which occur along the loop edge. We establish a reduction in oscillatory power, for these spatial periodicities, of 45% over a 322 s interval. We relate the reduction in oscillatory power to the physical damping of these loop-top oscillations.


Author(s):  
Jaume Terradas ◽  
Ramón Oliver ◽  
José Luis Ballester

The excitation and damping of transversal coronal loop oscillations is studied using one-and two-dimensional models of line-tied cylindrical loops. By solving the time-dependent magnetohydrodynamic equations it is shown how an initial disturbance generated in the solar corona induces kink mode oscillations. We investigate the effect of the disturbance on a loop with a non-uniform boundary layer. In particular, a strong damping of transversal oscillations due to resonant absorption is found, such as predicted by previous works based on normal mode analysis.


2018 ◽  
Vol 613 ◽  
pp. L3 ◽  
Author(s):  
P. Kohutova ◽  
E. Verwichte

Context. Flows of plasma along a coronal loop caused by the pressure difference between loop footpoints are common in the solar corona. Aims. We aim to investigate the possibility of excitation of loop oscillations by an impulsively driven flow triggered by an enhanced pressure in one of the loop footpoints. Methods. We carry out 2.5D magnetohydrodynamic (MHD) simulations of a coronal loop with an impulsively driven flow and investigate the properties and evolution of the resulting oscillatory motion of the loop. Results. The action of the centrifugal force associated with plasma moving at high speeds along the curved axis of the loop is found to excite the fundamental harmonic of a vertically polarised kink mode. We analyse the dependence of the resulting oscillations on the speed and kinetic energy of the flow. Conclusions. We find that flows with realistic speeds of less than 100 km s−1 are sufficient to excite oscillations with observable amplitudes. We therefore propose plasma flows as a possible excitation mechanism for observed transverse loop oscillations.


Author(s):  
Daria Shukhobodskaia ◽  
Alexander A. Shukhobodskiy ◽  
Chris J. Nelson ◽  
Michael S. Ruderman ◽  
Robert Erdélyi

Kink oscillations of coronal loops have been widely studied, both observationally and theoretically, over the past few decades. It has been shown that the majority of observed driven coronal loop oscillations appear to damp with either exponential or Gaussian profiles and a range of mechanisms have been proposed to account for this. However, some driven oscillations seem to evolve in manners which cannot be modeled with purely Gaussian or exponential profiles, with amplification of oscillations even being observed on occasions. Recent research has shown that incorporating the combined effects of coronal loop expansion, resonant absorption, and cooling can cause significant deviations from Gaussian and exponential profiles in damping profiles, potentially explaining increases in oscillation amplitude through time in some cases. In this article, we analyze 10 driven kink oscillations in coronal loops to further investigate the ability of expansion and cooling to explain complex damping profiles. Our results do not rely on fitting a periodicity to the oscillations meaning complexities in both temporal (period changes) and spatial (amplitude changes) can be accounted for in an elegant and simple way. Furthermore, this approach could also allow us to infer some important diagnostic information (such as, for example, the density ratio at the loop foot-points) from the oscillation profile alone, without detailed measurements of the loop and without complex numerical methods. Our results imply the existence of correlations between the density ratio at the loop foot-points and the amplitudes and periods of the oscillations. Finally, we compare our results to previous models, namely purely Gaussian and purely exponential damping profiles, through the calculation of χ2 values, finding the inclusion of cooling can produce better fits in some cases. The current study indicates that thermal evolution should be included in kink-mode oscillation models in the future to help us to better understand oscillations that are not purely Gaussian or exponential.


Author(s):  
S.F. Stinson ◽  
J.C. Lilga ◽  
M.B. Sporn

Increased nuclear size, resulting in an increase in the relative proportion of nuclear to cytoplasmic sizes, is an important morphologic criterion for the evaluation of neoplastic and pre-neoplastic cells. This paper describes investigations into the suitability of automated image analysis for quantitating changes in nuclear and cytoplasmic cross-sectional areas in exfoliated cells from tracheas treated with carcinogen.Neoplastic and pre-neoplastic lesions were induced in the tracheas of Syrian hamsters with the carcinogen N-methyl-N-nitrosourea. Cytology samples were collected intra-tracheally with a specially designed catheter (1) and stained by a modified Papanicolaou technique. Three cytology specimens were selected from animals with normal tracheas, 3 from animals with dysplastic changes, and 3 from animals with epidermoid carcinoma. One hundred randomly selected cells on each slide were analyzed with a Bausch and Lomb Pattern Analysis System automated image analyzer.


Author(s):  
Henry I. Smith ◽  
D.C. Flanders

Scanning electron beam lithography has been used for a number of years to write submicrometer linewidth patterns in radiation sensitive films (resist films) on substrates. On semi-infinite substrates, electron backscattering severely limits the exposure latitude and control of cross-sectional profile for patterns having fundamental spatial frequencies below about 4000 Å(l),Recently, STEM'S have been used to write patterns with linewidths below 100 Å. To avoid the detrimental effects of electron backscattering however, the substrates had to be carbon foils about 100 Å thick (2,3). X-ray lithography using the very soft radiation in the range 10 - 50 Å avoids the problem of backscattering and thus permits one to replicate on semi-infinite substrates patterns with linewidths of the order of 1000 Å and less, and in addition provides means for controlling cross-sectional profiles. X-radiation in the range 4-10 Å on the other hand is appropriate for replicating patterns in the linewidth range above about 3000 Å, and thus is most appropriate for microelectronic applications (4 - 6).


Author(s):  
Michel Troyonal ◽  
Huei Pei Kuoal ◽  
Benjamin M. Siegelal

A field emission system for our experimental ultra high vacuum electron microscope has been designed, constructed and tested. The electron optical system is based on the prototype whose performance has already been reported. A cross-sectional schematic illustrating the field emission source, preaccelerator lens and accelerator is given in Fig. 1. This field emission system is designed to be used with an electron microscope operated at 100-150kV in the conventional transmission mode. The electron optical system used to control the imaging of the field emission beam on the specimen consists of a weak condenser lens and the pre-field of a strong objective lens. The pre-accelerator lens is an einzel lens and is operated together with the accelerator in the constant angular magnification mode (CAM).


Author(s):  
M.A. Parker ◽  
K.E. Johnson ◽  
C. Hwang ◽  
A. Bermea

We have reported the dependence of the magnetic and recording properties of CoPtCr recording media on the thickness of the Cr underlayer. It was inferred from XRD data that grain-to-grain epitaxy of the Cr with the CoPtCr was responsible for the interaction observed between these layers. However, no cross-sectional TEM (XTEM) work was performed to confirm this inference. In this paper, we report the application of new techniques for preparing XTEM specimens from actual magnetic recording disks, and for layer-by-layer micro-diffraction with an electron probe elongated parallel to the surface of the deposited structure which elucidate the effect of the crystallographic structure of the Cr on that of the CoPtCr.XTEM specimens were prepared from magnetic recording disks by modifying a technique used to prepare semiconductor specimens. After 3mm disks were prepared per the standard XTEM procedure, these disks were then lapped using a tripod polishing device. A grid with a single 1mmx2mm hole was then glued with M-bond 610 to the polished side of the disk.


Sign in / Sign up

Export Citation Format

Share Document