Measurements on the heating in collisionless low-  transverse shock waves near the critical alfven-mach number

1971 ◽  
Vol 13 (2) ◽  
pp. 113-118 ◽  
Author(s):  
S E Segre ◽  
M Martone
Keyword(s):  
Author(s):  
P. M. Ligrani ◽  
C. Saumweber ◽  
A. Schulz ◽  
S. Wittig

Interactions between shock waves and film cooling are described as they affect magnitudes of local and spanwise-averaged adiabatic film cooling effectiveness distributions. A row of three cylindrical holes is employed. Spanwise spacing of holes is 4 diameters, and inclination angle is 30 degrees. Freestream Mach numbers of 0.8 and 1.10–1.12 are used, with coolant to freestream density ratios of 1.5–1.6. Shadowgraph images show different shock structures as the blowing ratio is changed, and as the condition employed for injection of film into the cooling holes is altered. Investigated are film plenum conditions, as well as perpendicular film injection cross-flow Mach numbers of 0.15, 0.3, and 0.6. Dramatic changes to local and spanwise-averaged adiabatic film effectiveness distributions are then observed as different shock wave structures develop in the immediate vicinity of the film-cooling holes. Variations are especially evident as the data obtained with a supersonic Mach number are compared to the data obtained with a freestream Mach number of 0.8. Local and spanwise-averaged effectiveness magnitudes are generally higher when shock waves are present when a film plenum condition (with zero cross-flow Mach number) is utilized. Effectiveness values measured with a supersonic approaching freestream and shock waves then decrease as the injection cross-flow Mach number increases. Such changes are due to altered flow separation regions in film holes, different injection velocity distributions at hole exits, and alterations of static pressures at film hole exits produced by different types of shock wave events.


2013 ◽  
Author(s):  
Yuqiang Dai ◽  
Fengxia Liu ◽  
Jintao Wu ◽  
Wei Wei ◽  
Dapeng Hu ◽  
...  

As a novel generation of rotational gas wave machines, wave rotor machines such as wave rotor refrigerators (WRR) and wave rotor superchargers (WRS) are unsteady flow devices. In their passages two gas streams (with different pressure or even different phases) comes into direct contact can exchange energy due to the movement of shock waves and expansion waves. A detailed study shows that, when rotor channels open to the high pressure port gradually, the contact face in rotor channels inevitably skews, which is always accompanied with reflection of shockwaves. This causes very large energy dissipation and influences adversely on the refrigeration performance of WRR or the supercharging performance of WRS. In this work, factors such as centrifugal forces, Coriolis forces, gradual channel opening and gradual channel closing, etc, which influence the wave transportation and skewing of shock waves and contact faces are studied by means of computational fluid dynamics and experiments. The skewing of contact faces causes uneven distribution of velocity and large local loss. With rotation Mach number smaller than 0.3, the skewing of contact face can be alleviated. To reduce the adverse influence of rotation Mach number, a smaller rotor channel width or higher rotational speed is necessary. The rotation effect plays an important role for the skewing of gas discontinuities. Both the centrifugal and Coriolis forces of wave rotor cannot be ignored with the Rossby number of 1.3∼3.5. To reduce the skewing loss of contact face, a lower rotational speed seems necessary. The rotation speed of wave rotors has dialectical influences on the skewing of shock waves and contact faces. The jetting width of high pressure port is the key factor of the gradual opening of rotor channels. A feasible way to reduce skewing losses of gas waves is to optimize the ratio between high pressure port width and channel width. The validation experiments have got at least 3∼5% rise of isentropic efficiency for WRRs.


2006 ◽  
Author(s):  
Khaled Alhussan

In this paper some characteristics of non-steady, compressible, flow are explored, including compression and expansion wave interactions and creation. The work to be presented herein is a Computational Fluid Dynamics investigation of the complex fluid phenomena that occur inside three-dimensional region, specifically with regard to the structure of the oblique shock waves, the reflected shock waves and the interactions of the shock waves. The flow is so complex that there exist oblique shock waves, expansion fans, slip surfaces, and shock wave interactions and reflections. The flow is non-steady, turbulent, viscous, compressible, and high-speed supersonic. The work to be presented herein is a Computational Fluid Dynamics analysis of flow over a 15-degree angle double wedge for a compressible air, with spin angle of 10-degree and Mach number of 2.5. The problem to be solved involves formation of shock waves, expansion fans and slip surfaces, so that the general characteristics of supersonic flow are explored through this problem. Shock waves and slip surfaces are discontinuities in fluid mechanics problems. It is essential to evaluate the ability of numerical technique that can solve problems in which shocks and contact surfaces occur. In particular it is necessary to understand the details of developing a mesh that will allow resolution of these discontinuities. Results including contour plots of pressure, temperature, and Mach number will show that CFD is capable of predicting accurate results and is also able to capture the discontinuities in the flow, e.g., the oblique shock waves and the slip surfaces. Through this computational analysis, a better interpretation of the physical phenomenon of the three-dimensional shock waves interaction and reflection can be achieved.


1968 ◽  
Vol 72 (686) ◽  
pp. 155-159
Author(s):  
M. Lalor ◽  
H. Daneshyar

Summary Tables of equilibrium thermodynamic properties of the ionized gas formed behind strong shock waves in Helium are presented, in the Mach number range 10 to 30, for initial pressures of 0-1, 0-5, 1, 5, 10, 50, 100 torr. The effect of the inclusion of the full partition function series is demonstrated in the Mach number range 20 to 30. A numerical solution has been developed such that the only experimental quantities required for its use are the shock Mach number and the pre-shock conditions.


Author(s):  
Khaled Alhussan

The work to be presented herein is a Computational Fluid Dynamics analysis of flow over a 15-degree angle double wedge for a compressible air, with Mach number of 2.95. The problem to be solved involves formation of shock waves, expansion fans and slip surfaces, so that the general characteristics of supersonic flow are explored through this problem. Shock waves and slip surfaces are discontinuities in fluid mechanics problems. It is essential to evaluate the ability of numerical technique that can solve problems in which shocks and contact surfaces occur. In particular it is necessary to understand the details of developing a mesh that will allow resolution of these discontinuities. Results including contour plots of pressure, temperature, density and Mach number will show that CFD is capable of predicting accurate results and is also able to capture the discontinuities in the flow, e.g., the oblique shock waves and the slip surfaces. The global comparison of some parameters between the numerical and the analytical values show a good agreement.


1957 ◽  
Vol 2 (4) ◽  
pp. 397-411 ◽  
Author(s):  
N. C. Freeman

The decay of small perturbations on a plane shock wave propagating along a two-dimensional channel into a fluid at rest is investigated mathematically. The perturbations arise from small departures of the walls from uniform parallel shape or, physically, by placing small obstacles on the otherwise plane parallel walls. An expression for the pressure on a shock wave entering a uniformly, but slowly, diverging channel already exists (given by Chester 1953) as a deduction from the Lighthill (1949) linearized small disturbance theory of flow behind nearly plane shock waves. Using this result, an expression for the pressure distribution produced by the obstacles upon the shock wave is built up as an integral of Fourier type. From this, the shock shape, ξ, is deduced and the decay of the perturbations obtained from an expansion (valid after the disturbances have been reflected many times between the walls) for ξ in descending power of the distance, ζ, travelled by the shock wave. It is shown that the stability properties of the shock wave are qualitatively similar to those discussed in a previous paper (Freeman 1955); the perturbations dying out in an oscillatory manner like ζ−3/2. As before, a Mach number of maximum stability (1·15) exists, the disturbances to the shock wave decaying most rapidly at this Mach number. A modified, but more complicated, expansion for the perturbations, for use when the shock wave Mach number is large, is given in §4.In particular, the results are derived for the case of symmetrical ‘roof top’ obstacles. These predictions are compared with data obtained from experiments with similar obstacles on the walls of a shock tube.


Sign in / Sign up

Export Citation Format

Share Document