Shock Wave - Film Cooling Interactions in Transonic Flows

Author(s):  
P. M. Ligrani ◽  
C. Saumweber ◽  
A. Schulz ◽  
S. Wittig

Interactions between shock waves and film cooling are described as they affect magnitudes of local and spanwise-averaged adiabatic film cooling effectiveness distributions. A row of three cylindrical holes is employed. Spanwise spacing of holes is 4 diameters, and inclination angle is 30 degrees. Freestream Mach numbers of 0.8 and 1.10–1.12 are used, with coolant to freestream density ratios of 1.5–1.6. Shadowgraph images show different shock structures as the blowing ratio is changed, and as the condition employed for injection of film into the cooling holes is altered. Investigated are film plenum conditions, as well as perpendicular film injection cross-flow Mach numbers of 0.15, 0.3, and 0.6. Dramatic changes to local and spanwise-averaged adiabatic film effectiveness distributions are then observed as different shock wave structures develop in the immediate vicinity of the film-cooling holes. Variations are especially evident as the data obtained with a supersonic Mach number are compared to the data obtained with a freestream Mach number of 0.8. Local and spanwise-averaged effectiveness magnitudes are generally higher when shock waves are present when a film plenum condition (with zero cross-flow Mach number) is utilized. Effectiveness values measured with a supersonic approaching freestream and shock waves then decrease as the injection cross-flow Mach number increases. Such changes are due to altered flow separation regions in film holes, different injection velocity distributions at hole exits, and alterations of static pressures at film hole exits produced by different types of shock wave events.

2001 ◽  
Vol 123 (4) ◽  
pp. 788-797 ◽  
Author(s):  
P. M. Ligrani ◽  
C. Saumweber ◽  
A. Schulz ◽  
S. Wittig

Interactions between shock waves and film cooling are described as they affect magnitudes of local and spanwise-averaged adiabatic film cooling effectiveness distributions. A row of three cylindrical holes is employed. Spanwise spacing of holes is 4 diameters, and inclination angle is 30 deg. Free-stream Mach numbers of 0.8 and 1.10–1.12 are used, with coolant to free-stream density ratios of 1.5–1.6. Shadowgraph images show different shock structures as the blowing ratio is changed, and as the condition employed for injection of film into the cooling holes is altered. Investigated are film plenum conditions, as well as perpendicular film injection crossflow Mach numbers of 0.15, 0.3, and 0.6. Dramatic changes to local and spanwise-averaged adiabatic film effectiveness distributions are then observed as different shock wave structures develop in the immediate vicinity of the film-cooling holes. Variations are especially evident as the data obtained with a supersonic Mach number are compared to the data obtained with a free-stream Mach number of 0.8. Local and spanwise-averaged effectiveness magnitudes are generally higher when shock waves are present when a film plenum condition (with zero crossflow Mach number) is utilized. Effectiveness values measured with a supersonic approaching free-stream and shock waves then decrease as the injection crossflow Mach number increases. Such changes are due to altered flow separation regions in film holes, different injection velocity distributions at hole exits, and alterations of static pressures at film hole exits produced by different types of shock wave events.


Author(s):  
Jeswin Joseph ◽  
S. R. Shine

Very high thermal loads are expected in re-entry vehicles traveling at hypersonic Mach numbers due to severe aerodynamic heating. In the present study, numerical investigations are carried out to analyze the use of film cooling technology for a fully reusable and active thermal protection system of the re-entry vehicle. Simulations are done to examine the fundamental flow phenomenon and the performance of blunt body film cooling in hypersonic flows. Simulations are conducted for a blunt -nosed spacecraft flying at Mach numbers varying from 4 to 8 and 40 deg angle of attack. Film cooling holes are provided on the bottom of the blunt-nosed body. Standard values at an altitude of 30 km are used as in flow boundary conditions. The dependency of blowing ratios, stream-wise injection angle and inlet Mach number on the film cooling effectiveness are investigated. It is observed that the film cooling effectiveness reduces with increase in coolant injection angle. The film cooling performance is found to be decreasing with increase in Mach number. The results could provide useful inputs for optimization of an active thermal protection system of re-entry vehicles.


Author(s):  
A. C. Smith ◽  
J. H. Hatchett ◽  
A. C. Nix ◽  
W. F. Ng ◽  
K. A. Thole ◽  
...  

An experimental and numerical investigation was conducted to determine the film cooling effectiveness of a normal slot and angled slot under realistic engine Mach number conditions. Freestream Mach numbers of 0.65 and 1.3 were tested. For the normal slot, hot gas ingestion into the slot was observed at low blowing ratios (M < 0.25). At high blowing ratios (M > 0.6) the cooling film was observed to “lift off” from the surface. For the 30° angled slot, the data was found to collapse using the blowing ratio as a scaling parameter. Results from the current experiment were compared with the subsonic data previously published. For the angle slot, at supersonic freestream Mach number, the current experiment shows that at the same x/Ms, the film-cooling effectiveness increases by as much as 25% as compared to the subsonic case. The results of the experiment also show that at the same x/Ms, the film cooling effectiveness of the angle slot is considerably higher than the normal slot, at both subsonic and supersonic Mach numbers. The flow physics for the slot tests considered here are also described with computational fluid dynamic (CFD) simulations in the subsonic and supersonic regimes.


Author(s):  
Chao-Cheng Shiau ◽  
Izzet Sahin ◽  
Izhar Ullah ◽  
Je-Chin Han ◽  
Alexander V. Mirzamoghadam ◽  
...  

Abstract This work focuses on the parametric study of film cooling effectiveness on turbine vane endwall under various flow conditions. The experiments were performed in a five-vane annular sector cascade facility in a blowdown wind tunnel. The controlled exit isentropic Mach numbers were 0.7, 0.9, and 1.0, from high subsonic to transonic conditions. The freestream turbulence intensity is estimated to be 12%. Three coolant-to-mainstream mass flow ratios (MFR) in the range 0.75%, 1.0%, and 1.25% are studied. N2, CO2, and Argon/SF6 mixture were used to investigate the effects of density ratio (DR), ranging from 1.0, 1.5 to 2.0. There are 8 cylindrical holes on the endwall inside the passage. Pressure-sensitive paint (PSP) technique was used to capture the endwall pressure distribution for shock wave visualization and obtain the detailed film cooling effectiveness distributions. Both the high-fidelity effectiveness contour and the laterally (spanwise) averaged effectiveness were measured to quantify the parametric effect. This study will provide the gas turbine designer more insight on how the endwall film cooling effectiveness varies with different cooling flow conditions including shock wave through the endwall cross-flow passage.


Author(s):  
Kyle R. Vinton ◽  
Lesley M. Wright

Film cooling flow fields under a favorable, mainstream pressure gradient have been experimentally investigated at various blowing and density ratios. Three dimensional velocity and vorticity distributions have been obtained above a flat plate with cylindrical holes (θ = 30°) and laidback, fanshaped holes (θ = 30°, β = γ = 10°) using the stereoscopic particle image velocimetry (S-PIV) technique. In a low speed wind tunnel, accelerating flows were studied with density ratios of 1 and 3. The effect of blowing ratio was also studied by varying the ratio from 0.5 to 1.5. With a flow acceleration parameter comparable to previous investigations, the effect of flow acceleration on these film cooling flows is presented. The flow field measurements were performed at two planes near the film cooling holes (x/d = 0 and the downstream edge) for both the round and shaped holes. These flow field measurements provide a foundation for understanding the flow interactions that produce various film cooling effectiveness and heat transfer coefficient distributions on the surface of the airfoil. The S-PIV measurements show that a favorable pressure gradient reduces jet separation and increases the width of the jet and counter rotating vortex pair. The effects are caused by the thinning of the boundary layer that occurs in favorable pressure gradient flows.


2016 ◽  
Vol 138 (12) ◽  
Author(s):  
Sean R. Klavetter ◽  
John W. McClintic ◽  
David G. Bogard ◽  
Jason E. Dees ◽  
Gregory M. Laskowski ◽  
...  

Early stage gas turbine blades feature complicated internal geometries in order to enhance internal heat transfer and to supply coolant for film cooling. Most film cooling experiments decouple the effect of internal coolant feed from external film cooling effectiveness, even though engine parts are commonly fed by cross-flow and feature internal rib turbulators which can affect film cooling. Experiments measuring adiabatic effectiveness were conducted to investigate the effects of turbulated perpendicular cross-flow on a row of 45 deg compound angle cylindrical film cooling holes for a total of eight internal rib configurations. The ribs were angled to the direction of prevailing internal cross-flow at two different angles: 45 deg or 135 deg. The ribs were also positioned at two different spanwise locations relative to the cooling holes: in the middle of the cooling hole pitch and slightly intersecting the holes. Experiments were conducted at a density ratio of DR = 1.5 for a range of blowing ratios including M = 0.5, 0.75, 1.0, 1.5, and 2.0. This study demonstrates that peak effectiveness can be attained through the optimization of cross-flow direction relative to the compound angle direction and rib configuration, verifying the importance of hole inlet conditions in film cooling experiments. It was found that ribs tend to reduce adiabatic effectiveness relative to a baseline, smooth-walled configuration. Rib configurations that directed the internal coolant forward in the direction of the mainstream resulted in higher peak adiabatic effectiveness. However, no other parameters could consistently be identified correlating to increased film cooling performance. It is likely that a combination of factors is responsible for influencing performance, including internal local pressure caused by the ribs, the internal channel flow field, in-hole vortices, and jet exit velocity profiles. This study also attempted to replicate the possibility that film cooling holes may intersect ribs and found that a hole which partially intersects a rib still maintains moderate levels of effectiveness.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
John W. McClintic ◽  
Joshua B. Anderson ◽  
David G. Bogard ◽  
Thomas E. Dyson ◽  
Zachary D. Webster

The effect of feeding shaped film cooling holes with an internal crossflow is not well understood. Previous studies have shown that internal crossflow reduces film cooling effectiveness from axial shaped holes, but little is known about the mechanisms governing this effect. It was recently shown that the crossflow-to-mainstream velocity ratio is important, but only a few of these crossflow velocity ratios have been studied. This effect is of concern because gas turbine blades typically feature internal passages that feed film cooling holes in this manner. In this study, film cooling effectiveness was measured for a single row of axial shaped cooling holes fed by an internal crossflow with crossflow-to-mainstream velocity ratio varying from 0.2 to 0.6 and jet-to-mainstream velocity ratios varying from 0.3 to 1.7. Experiments were conducted in a low speed flat plate facility at coolant-to-mainstream density ratios of 1.2 and 1.8. It was found that film cooling effectiveness was highly sensitive to crossflow velocity at higher injection rates while it was much less sensitive at lower injection rates. Analysis of the jet shape and lateral spreading found that certain jet characteristic parameters scale well with the crossflow-to-coolant jet velocity ratio, demonstrating that the crossflow effect is governed by how coolant enters the film cooling holes.


Author(s):  
Sean R. Klavetter ◽  
John W. McClintic ◽  
David G. Bogard ◽  
Jason E. Dees ◽  
Gregory M. Laskowski ◽  
...  

Early stage gas turbine blades feature complicated internal geometries in order to enhance internal heat transfer and to supply coolant for film cooling. Most film cooling experiments decouple the effect of internal coolant feed from external film cooling effectiveness, even though engine parts are commonly fed by cross-flow and feature internal rib turbulators which can affect film cooling. Experiments measuring adiabatic effectiveness were conducted to investigate the effects of turbulated perpendicular cross-flow on a row of 45° compound angle cylindrical film cooling holes for a total of eight internal rib configurations. The ribs were angled to the direction of prevailing internal cross-flow at two different angles: 45° or 135°. The ribs were also positioned at two different span-wise locations relative to the cooling holes: in the middle of the cooling hole pitch, and slightly intersecting the holes. Experiments were conducted at a density ratio of DR = 1.5 for a range of blowing ratios including M = 0.5, 0.75, 1.0, 1.5, and 2.0. This study demonstrates that peak effectiveness can be attained through the optimization of cross-flow direction relative to the compound angle direction and rib configuration, verifying the importance of hole inlet conditions in film cooling experiments. It was found that ribs tend to reduce adiabatic effectiveness relative to a baseline, smooth-walled configuration. Rib configurations that directed the internal coolant forward in the direction of the mainstream resulted in higher peak adiabatic effectiveness. However, no other parameters could consistently be identified correlating to increased film cooling performance. It is likely that a combination of factors is responsible for influencing performance, including internal local pressure caused by the ribs, the internal channel flow field, in-hole vortices, and jet exit velocity profiles. This study also attempted to replicate the possibility that film cooling holes may intersect ribs and found that a hole which partially intersects a rib still maintains moderate levels of effectiveness.


Author(s):  
Ellen Wilkes ◽  
Joshua Anderson ◽  
John McClintic ◽  
David Bogard

This study focuses on specifics of gas turbine film cooling. Laboratory film cooling tests are important for industry because actual engine conditions are too hot, too small, and too fast to take accurate and high resolution measurements. Experiments are typically conducted using a plenum to feed coolant through round or shaped film cooling holes. Less common are experiments using cross-flow fed coolant, a method that flows coolant perpendicular to the mainstream flow and better represents engine designs. There are a few studies that have explored shaped holes in cross-flow, but none have looked at the effect cross-flow channel parameters other than Mach number. Here, the effectiveness of film cooling is quantified by measuring adiabatic effectiveness on a flat plate with a single row of shaped film cooling holes in cross-flow. A preliminary examination of the effect of cross-flow versus plenum fed coolant on the adiabatic effectiveness of the axial 7-7-7 shaped hole, a laidback fan-shaped hole with a 30 degree injection angle, is first conducted. Subsequently, the effects of two internal coolant parameters on film cooling effectiveness are presented: Reynold’s number inside the cross-flow channel, and velocity ratio (defined as the ratio of cross-flow channel average velocity to mainstream velocity). By measuring the effect of these parameters, a chain of relative importance can be generated and applied to future experimentation. Parameters that heavily influence film cooling effectiveness can be studied further and optimized for turbine film cooling design.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Andrew F Chen ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han

The combined effects of upstream purge flow, slashface leakage flow, and discrete hole film cooling on turbine blade platform film cooling effectiveness were studied using the pressure sensitive paint (PSP) technique. As a continued study, discrete cylindrical holes were replaced by laidback fan-shaped (10-10-5) holes, which generally provide better film coverages on the endwall. Experiments were done in a five-blade linear cascade. The inlet and exit Mach numbers were 0.26 and 0.43, respectively. The inlet and exit mainstream Reynolds numbers based on the axial chord length of the blade were 475,000 and 720,000, respectively. A wide range of parameters was evaluated in this study. The coolant-to-mainstream mass flow ratio (MFR) was varied from 0.5%, 0.75%, to 1% for the upstream purge flow. For the platform film cooling holes and slashface gap, average blowing ratios (M) of 0.5, 1.0, and 1.5 were examined. Coolant-to-mainstream density ratios (DR) that range from 1 (close to low-temperature experiments) to 1.5 (intermediate DR) and 2 (close to engine conditions) were also examined. Purge flow swirl effect was studied particularly at a typical swirl ratio (SR) of 0.6. Area-averaged film cooling effectiveness results were compared between cylindrical and fan-shaped holes. The results indicate that the fan-shaped holes provide superior film coverage than cylindrical holes for platform film cooling especially at higher blowing ratios and momentum flux ratios.


Sign in / Sign up

Export Citation Format

Share Document