scholarly journals Temperature dependence of the dielectric permittivity of CaF2, BaF2and Al2O3: application to the prediction of a temperature-dependent van der Waals surface interaction exerted onto a neighbouring Cs(8P3/2) atom

2009 ◽  
Vol 21 (25) ◽  
pp. 255902 ◽  
Author(s):  
Thierry Passerat de Silans ◽  
Isabelle Maurin ◽  
Pedro Chaves de Souza Segundo ◽  
Solomon Saltiel ◽  
Marie-Pascale Gorza ◽  
...  
2017 ◽  
Vol 813 ◽  
pp. 1060-1111 ◽  
Author(s):  
Mathias Dietzel ◽  
Steffen Hardt

The effect of an axial temperature gradient on the flow profile and the induced streaming potential of a pressure-driven symmetric electrolyte in a slit channel is investigated. Based on the non-isothermal Nernst–Planck equations, as well as the Poisson equation in the lubrication approximation, expressions for the ion distribution in the electric double layer (EDL) are derived. It is found that thermophoretic ion motion and a temperature-dependent electrophoretic ion mobility increase the local EDL thickness with temperature, whereas a temperature-dependent permittivity shrinks the EDL. Within the Debye–Hückel approximation, the Navier–Stokes equation with the corresponding electric body force terms is solved. Analytical expressions for the flow profile and the induced (streaming) field under non-isothermal conditions are derived. It is shown that for such a situation the induced electric field is the linear superposition of at least seven individual contributions. For very wide channels, only the thermoelectric field typically present in bulk electrolytes when subjected to a temperature gradient (Soret equilibrium) as well as the conventional pressure-induced streaming field are of importance. Counterintuitively, for the latter, while still being affected by the temperature dependence of the dielectric permittivity and local salt concentration, the temperature dependencies of the viscosity, Fickian diffusion coefficients and ion electromobilities exactly cancel each other. For narrow channels, five additional contributions become relevant, which – similar to the Soret voltage – do not vanish in the case that the externally applied pressure gradient is removed. The first is caused by selective thermo-electromigration driven by the interplay between the temperature-dependent electrophoretic ion mobility and the interaction of the ions with the surface wall charge. This non-advective effect is at its maximum under extreme confinement. For channels whose widths are of the same order as the EDL thickness, four thermoosmotic effects become significant. Besides the well-known thermoosmosis due to the temperature dependence of the dielectric permittivity in the (extended) Korteweg–Helmholtz force, it is demonstrated that – by contrast to isothermal conditions – a thermal gradient renders the ion cloud in the EDL out of mechanical equilibrium. In this context it is shown that a thermophoretic ion motion (i.e. the intrinsic Soret effect of the ions) and a temperature-dependent ion electromobility as well as a temperature-dependent permittivity not only cause an axial gradient of the EDL potential, but simultaneously lead to a pressure of thermal origin, which sets the fluid into an advective motion. Corresponding phenomena were not previously discussed in the literature and may be interpreted as an apparent, thermally induced slip velocity within the EDL. Subsequently, the ion advection affiliated with such thermoosmotic flow may induce a thermoelectric field of a similar order of magnitude to that caused by more conventional thermal effects.


1986 ◽  
Vol 41 (1-2) ◽  
pp. 171-174 ◽  
Author(s):  
M. Frank ◽  
F. Gubitz ◽  
W. Ittner ◽  
W. Kreische ◽  
A. Labahn ◽  
...  

The 19F quadrupole coupling constants in CF4, CHF3, CClF3 and CHClF2 are reported. The measurements were carried out temperature dependent using the time differential perturbed angular distribution method (TDPAD). The temperature dependence can be satisfactorily described in the framework of the Bayer-Kushida theory. A simple model is used to explain the appearance of H-F and Cl-F coupling constants in CHF3/CHClF2 and CClF3, respectively.


2001 ◽  
Vol 679 ◽  
Author(s):  
Stephen B. Cronin ◽  
Yu-Ming Lin ◽  
Oded Rabin ◽  
Marcie R. Black ◽  
Gene Dresselhaus ◽  
...  

ABSTRACTThe pressure filling of anodic alumina templates with molten bismuth has been used to synthesize single crystalline bismuth nanowires with diameters ranging from 7 to 200nm and lengths of 50μm. The nanowires are separated by dissolving the template, and electrodes are affixed to single Bi nanowires on Si substrates. A focused ion beam (FIB) technique is used first to sputter off the oxide from the nanowires with a Ga ion beam and then to deposit Pt without breaking vacuum. The resistivity of a 200nm diameter Bi nanowire is found to be only slightly greater than the bulk value, while preliminary measurements indicate that the resistivity of a 100nm diameter nanowire is significantly larger than bulk. The temperature dependence of the resistivity of a 100nm nanowire is modeled by considering the temperature dependent band parameters and the quantized band structure of the nanowires. This theoretical model is consistent with the experimental results.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Qian Li ◽  
Yun Liu ◽  
Andrew Studer ◽  
Zhenrong Li ◽  
Ray Withers ◽  
...  

We characterized the temperature dependent (~25–200°C) electromechanical properties and crystal structure of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3single crystals usingin situelectrical measurement and neutron diffraction techniques. The results show that the poled crystal experiences an addition phase transition around 120°C whereas such a transition is absent in the unpoled crystal. It is also found that the polar order persists above the maximum dielectric permittivity temperature at which the crystal shows a well-defined antiferroelectric behavior. The changes in the electrical properties and underlying crystal structure are discussed in the paper.


1972 ◽  
Vol 39 (3) ◽  
pp. 723-726 ◽  
Author(s):  
U. Olsson

The influence of the temperature-dependence of the material properties on the free vibrations of transiently heated structures is investigated. Analytical solutions are given for linear, exponential, and harmonic temperature variations when the material damping parameter, Poisson’s ratio, and Young’s modulus depend on the temperature.


Sign in / Sign up

Export Citation Format

Share Document