scholarly journals Temperature Dependence of Electrical Properties and Crystal Structure of 0.29Pb(In1/2Nb1/2)O3–0.44Pb(Mg1/3Nb2/3)O3–0.27PbTiO3Single Crystals

2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Qian Li ◽  
Yun Liu ◽  
Andrew Studer ◽  
Zhenrong Li ◽  
Ray Withers ◽  
...  

We characterized the temperature dependent (~25–200°C) electromechanical properties and crystal structure of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3single crystals usingin situelectrical measurement and neutron diffraction techniques. The results show that the poled crystal experiences an addition phase transition around 120°C whereas such a transition is absent in the unpoled crystal. It is also found that the polar order persists above the maximum dielectric permittivity temperature at which the crystal shows a well-defined antiferroelectric behavior. The changes in the electrical properties and underlying crystal structure are discussed in the paper.

2020 ◽  
Vol 2 (1) ◽  
pp. 37-42
Author(s):  
Arunachalam M ◽  
Thamilmaran P ◽  
Sakthipandi K

Lanthanum calcium based perovskites are found to be advantageous for the possible applications in magnetic sensors/reading heads, cathodes in solid oxide fuel cells, and frequency switching devices. In the present investigation La0.3Ca0.7MnO3 perovskites were synthesised through solid state reaction and sintered at four different temperatures such as 900, 1000, 1100 and 1200˚ C. X-ray powder diffraction pattern confirms that the prepared La0.3Ca0.7MnO3 perovskites have orthorhombic structure with Pnma space group. Ultrasonic in-situ measurements have been carried out on the La0.3Ca0.7MnO3 perovskites over wide range of temperature and elastic constants such as bulk modulus of the prepared La0.3Ca0.7MnO3 perovskites was obtained as function of temperature. The temperature-dependent bulk modulus has shown an interesting anomaly at the metal-insulator phase transition. The metal insulator transition temperature derived from temperature-dependent bulk modulus increases from temperature 352˚ C to 367˚ C with the increase of sintering temperature from 900 to 1200˚ C.


2000 ◽  
Vol 64 (2) ◽  
pp. 255-266 ◽  
Author(s):  
J. J. Reece ◽  
S. A. T. Redfern ◽  
M. D. Welch ◽  
C. M. B. Henderson

AbstractThe crystal structure of a manganoan cummingtonite, composition [M4](Na0.13Ca0.41Mg0.46Mn1.00) [M1,2,3](Mg4.87Mn0.13)(Si8O22)(OH)2, (Z = 2), a = 9.5539(2) Å, b = 18.0293(3) Å, c = 5.2999(1) Å, β = 102.614(2)° from Talcville, New York, has been refined at high temperature using in situ neutron powder diffraction. The P21/m to C2/m phase transition, observed as spontaneous strains +ε1 = −ε2, occurs at ˜107°C. Long-range disordering between Mg2+ and Mn2+ on the M(4) and M(2) sites occurs above 550°C. Mn2+ occupies the M(4) and M(2) sites preferring M(4) with a site-preference energy of 24.6±1.5 kJ mol−1. Disordering induces an increase in XMnM2 and decrease in XMnM4 at elevated temperatures. Upon cooling, the ordered states of cation occupancy are ‘frozen in’ and strains in lattice parameters are maintained, suggesting that re-equilibration during cooling has not taken place.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Joachim Breternitz ◽  
Michael Tovar ◽  
Susan Schorr

Abstract The crystal structure of MAPbI3, the signature compound of the hybrid halide perovskites, at room temperature has been a reason for debate and confusion in the past. Part of this confusion may be due to twinning as the material bears a phase transition just above room temperature, which follows a direct group–subgroup relationship and is prone to twinning. Using neutron Laue diffraction, we illustrate the nature of twinning in the room temperature structure of MAPbI3 and explain its origins from a group-theoretical point-of-view.


2009 ◽  
Vol 24 (12) ◽  
pp. 3551-3558 ◽  
Author(s):  
S.J. Patwe ◽  
S. Nagabhusan Achary ◽  
Avesh K. Tyagi

Ca0.5Th0.5VO4 was prepared by a solid-state reaction of component oxides and characterized by powder x-ray diffraction (XRD) at ambient and higher temperatures and impedance spectroscopy. Crystal structure was refined by Rietveld refinements from powder XRD data. At room temperature, Ca0.5Th0.5VO4 has a zircon-type tetragonal (I41/amd) lattice with unit cell parameters: a = 7.2650(1) and c = 6.4460(1) Å. Despite the large charge difference, Ca2+ and Th4+ are statistically distributed over a single site. The crystal structure of Ca0.5Th0.5VO4 is built from the (Ca/Th)O8 (bisdisphenoid) and VO4 tetrahedra. The in situ high-temperature XRD studies on Ca0.5Th0.5VO4 revealed anisotropic thermal expansion behavior with coefficients of thermal expansion αc = 10.96 × 10−6/°C and αa = 5.32 × 10−6/°C. The impedance measurements carried out in the temperature range from ambient to 800 °C indicate semiconducting behavior with appreciable ionic conductivity above 400 °C. The activation energy obtained from the temperature-dependent AC conductivity data is ∼1.37 eV. In wider range of frequencies and temperatures, the relative permittivity of approximately 50 to 60 is observed for Ca0.5Th0.5VO4.


2014 ◽  
Vol 70 (a1) ◽  
pp. C353-C353 ◽  
Author(s):  
Neeraj Sharma

Lithium-ion batteries are ubiquitous in society, used in everything from children's toys to mobile electronic devices, providing portable power solutions. There is a continuous drive for the improvement of these batteries to meet the demands of higher power devices and uses. A large proportion of the function of lithium-ion batteries arises from the electrodes, and these are in turn mediated by the atomic-scale perturbations or changes in the crystal structure during an electrochemical process (e.g. battery use). Therefore, a method to both understand battery function and propose ideas to improve their performance is to probe the electrode crystal structure evolution in situ while an electrochemical process is occurring inside a battery. Our work has utilized the benefits of in situ neutron diffraction (e.g. sensitivity towards lithium) to literally track the time-resolved evolution of lithium in electrode materials used in lithium-ion batteries (see Figure 1). With this knowledge we have been able to directly relate electrochemical properties such as capacity and differences in charge/discharge behaviour of a battery to the content and distribution of lithium in the electrode crystal structure. This talk will showcase some of our in situ investigations of materials in lithium-ion batteries, such as LiCoO2, LiFePO4, Li1+yMn2O4, LiNi0.5Mn1.5O4 and Li4Ti5O12/TiO2 electrodes. In addition, selected examples of our work using time-resolved in situ X-ray diffraction to probe other batteries types, such as primary lithium and secondary (rechargeable) sodium-ion batteries will be presented. Using time-resolved diffraction data, a comprehensive atomic-scale picture of battery functionality can be modelled and permutations can be made to the electrodes and electrochemical conditions to optimize battery performance. Therefore, crystallography and electrochemistry can mesh together to solve our energy needs.


2009 ◽  
Vol 16 (2) ◽  
pp. 260-263 ◽  
Author(s):  
B. Andriyevsky ◽  
C. Cobet ◽  
A. Patryn ◽  
N. Esser

Spectra of the real and imaginary parts of the pseudo-dielectric permittivity, 〈∊1〉(E) and 〈∊2〉(E), of ferroelectric ammonium sulfate crystals, (NH4)2SO4, have been measured in the range of electronic excitations 4.0 to 9.5 eV by ellipsometry using synchrotron radiation. Temperature dependences of the corresponding susceptibilities, 〈χ1〉(T) and 〈χ2〉(T), obtained for the photon energy E = 8.5 eV, related to excitations of oxygen p-electrons, reveal sharp peak-like temperature changes near the Curie point T C = 223 K. The large temperature-dependent increase of the imaginary part of the susceptibility χ2(T), together with a simultaneous decrease of the real part of the susceptibility χ1(T), take place at the phase transition. These anomalies have been ascribed mainly to the SO4 group of the crystal structure.


Sign in / Sign up

Export Citation Format

Share Document