The synthesis, characterization and polymerization kinetic study of a series of related addition polyimides

1994 ◽  
Vol 6 (1) ◽  
pp. 21-34 ◽  
Author(s):  
John M Barton ◽  
Ian Hamerton ◽  
John B Rose ◽  
David Wamer

A series of eight addition polymides (aspartimides) was prepared in which the imide and amino groups were attached to the ends of aromatic residues containing two or four phenylene rings. The co-monomers (bis-maleimides. BMIs, and diamines) were purified using column chromatography before being fully characterized by spectroscopic techniques. The thermally induced Michael addition and polymerization reactions of the blended co-monomers were monitored using differential scanning calorimetry (Dsc) at several heating rates to enable the kinetics of the processes to be investigated. The thermal stabilities of the thermoset products of these aspartimides were evaluated by thermogravimetric analysis (TGA). Dynamic mechanical thermal analysis (DMTA) was employed to test the physical properties of the neat resins.

2015 ◽  
Vol 60 (2) ◽  
pp. 1357-1359 ◽  
Author(s):  
Y. Hongbo ◽  
C. Meiling ◽  
W. Xu ◽  
G. Hong

Abstract The thermal decomposition of magnesium-aluminum layered double hydroxides (LDHs) was investigated by thermogravimetry analysis and differential scanning calorimetry (DSC) methods in argon environment. The influence of heating rates (including 2.5, 5, 10, 15 and 20K/min) on the thermal behavior of LDHs was revealed. By the methods of Kissinger and Flynn-Wall-Ozawa, the thermal kinetic parameters of activation energy and pre-exponential factor for the exothermic processes under non-isothermal conditions were calculated using the analysis of corresponding DSC curves.


2021 ◽  
pp. 002199832110015
Author(s):  
Alexander Vedernikov ◽  
Yaroslav Nasonov ◽  
Roman Korotkov ◽  
Sergey Gusev ◽  
Iskander Akhatov ◽  
...  

Pultrusion is a highly efficient composite manufacturing process. To accurately describe pultrusion, an appropriate model of resin cure kinetics is required. In this study, we investigated cure kinetics modeling of a vinyl ester pultrusion resin (Atlac 430) in the presence of aluminum hydroxide (Al(OH)3) and zinc stearate (Zn(C18H35O2)2) as processing additives. Herein, four different resin compositions were studied: neat resin composition, composition with Al(OH)3, composition comprising Zn(C18H35O2)2, and composition containing both Al(OH)3 and Zn(C18H35O2)2. To analyze each composition, we performed differential scanning calorimetry at the heating rates of 5, 7.5, and 10 K/min. To characterize the cure kinetics of Atlac 430, 16 kinetic models were tested, and their performances were compared. The model based on the [Formula: see text]th-order autocatalytic reaction demonstrated the best results, with a 4.5% mean squared error (MSE) between the experimental and predicted data. This study proposes a method to reduce the MSE resulting from the simultaneous melting of Zn(C18H35O2)2. We were able to reduce the MSE by approximately 34%. Numerical simulations conducted at different temperatures and pulling speeds demonstrated a significant influence of resin composition on the pultrusion of a flat laminate profile. Simulation results obtained for the 600 mm long die block at different die temperatures (115, 120, 125, and 130 °C) showed that for a resin with a final degree of cure exceeding 95% at the die exit, the maximum difference between the predicted values of pulling speed for a specified set of compositions may exceed 1.7 times.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali Kuliaei ◽  
Iraj Amiri Amraei ◽  
Seyed Rasoul Mousavi

Abstract The purpose behind this research was to determine the optimum formulation and investigate the cure kinetics of a diglycidyl ether of bisphenol-A (DGEBA)-based epoxy resin cured by dicyandiamide and diuron for use in prepregs. First, all formulations were examined by the tensile test, and then, the specimens with higher mechanical properties were further investigated by viscometry and tack tests. The cure kinetics of the best formulation (based on tack test) in nonisothermal mode was investigated using differential scanning calorimetry at different heating rates. Kissinger and Ozawa method was used for determining the kinetic parameters of the curing process. The activation energy obtained by this method was 71.43 kJ/mol. The heating rate had no significant effect on the reaction order and the total reaction order was approximately constant ( m + n ≅ 2.1 $m+n\cong 2.1$ ). By comparing the experimental data and the theoretical data obtained by Kissinger and Ozawa method, a good agreement was seen between them. By increasing the degree of conversion, the viscosity decreased; as the degree of conversion increased, so did the slope of viscosity. The results of the tack test also indicated that the highest tack could be obtained with 25% progress of curing.


2018 ◽  
Vol 18 (44) ◽  
pp. 20-23
Author(s):  
Jargalmaa S ◽  
Tsatsral G ◽  
Battsetseg M ◽  
Batkhishig D ◽  
Ankhtuya A ◽  
...  

Thermal analysis was used for the thermal characterization of the coal samples. The experiments were performed to study the pyrolysis and gasification kinetics of typical Mongolian brown coals. Low rank coals from Shivee ovoo, Ulaan ovoo, Aduun chuluun and Baganuur deposits have been investigated. Coal samples were heated in the thermogravimetric apparatus under argon at a temperature ranges of 25-1020ºC with heating rates of 10, 20, 30 and 40ºC/min. Thermogravimetry (TG) and derivative thermogravimetry (DTG) were performed to measure weight changes and rates of weight losses used for calculating the kinetic parameters. The activation energy (Ea) was calculated from the experimental results by using an Arrhenius type kinetic model.


2020 ◽  
Vol 32 (2) ◽  
pp. 135-141
Author(s):  
Sweta Shukla

The kinetics of emulsion polymerization of monomers methyl methacrylate (MMA)/ n-butyl methacrylate (BMA) was studied to investigate the effect of cross-linkable monomer poly(propylene glycol diacrylate) (PPGDA). The results showed that by the incorporation of PPGDA rate constant of reaction decreased. Fourier transform infrared spectroscopy and scanning electron microscope were used to characterize the synthesized polymers. The thermal analysis of samples was done by differential scanning calorimetry, and the results were compared by the previous studies with MMA/ n-butyl acrylate (BA) and MMA/2-ethylhexyl acrylate (EHA). The glass transition temperature ( T g) values show that the latexes prepared using BA and EHA as comonomer was suitable for binder purpose, but in the present study the T g is not suitable in case of BMA as higher acrylate comonomer. That may be due to more cross-linking in MMA-BMA-PPGDA. The results conclude that the BA and EHA can be used as the binder, but the use of BMA is limited for the binder in coating applications.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1163 ◽  
Author(s):  
Walid Hikal ◽  
Brandon Weeks

Non-isothermal sublimation kinetics of low-volatile materials is more favorable over isothermal data when time is a crucial factor to be considered, especially in the subject of detecting explosives. In this article, we report on the in-situ measurements of the sublimation activation energy for 2,4,6-trinitrotoluene (TNT) continuous nanofilms in air using rising-temperature UV-Vis absorbance spectroscopy at different heating rates. The TNT films were prepared by the spin coating deposition technique. For the first time, the most widely used procedure to determine sublimation rates using thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC) was followed in this work using UV-Vis absorbance spectroscopy. The sublimation kinetics were analyzed using three well-established calculating techniques. The non-isothermal based activation energy values using the Ozawa, Flynn–Wall, and Kissinger models were 105.9 ± 1.4 kJ mol−1, 102.1 ± 2.7 kJ mol−1, and 105.8 ± 1.6 kJ mol−1, respectively. The calculated activation energy agreed well with our previously reported isothermally-measured value for TNT nanofilms using UV-Vis absorbance spectroscopy. The results show that the well-established non-isothermal analytical techniques can be successfully applied at a nanoscale to determine sublimation kinetics using absorbance spectroscopy.


2014 ◽  
Vol 32 (3) ◽  
pp. 385-390
Author(s):  
Aysel Kantürk Figen ◽  
Bilge Coşkuner ◽  
Sabriye Pişkin

AbstractIn the present study, hydrogen desorption properties of magnesium hydride (MgH2) synthesized from modified waste magnesium chips (WMC) were investigated. MgH2 was synthesized by hydrogenation of modified waste magnesium at 320 °C for 90 min under a pressure of 6 × 106 Pa. The modified waste magnesium was prepared by mixing waste magnesium with tetrahydrofuran (THF) and NaCl additions, applying mechanical milling. Next, it was investigated by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) techniques in order to characterize its structural properties. Hydrogen desorption properties were determined by differential scanning calorimetry (DSC) under nitrogen atmosphere at different heating rates (5, 10, and 15 °C/min). Doyle and Kissenger non-isothermal kinetic models were applied to calculate energy (Ea) values, which were found equal to 254.68 kJ/mol and 255.88 kJ/mol, respectively.


BioResources ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 414-425 ◽  
Author(s):  
Parnia Zakikhani ◽  
Rizal Zahari ◽  
Mohamed Thariq Hameed Sultan ◽  
Dayang Laila Abang Abdul Majid

Bamboo, among other natural plants, has a special structure, with different characterization along the culms and between species. In this study, the thermal stabilities of four bamboo species, named Dendrocalamus pendulus (DP), Dendrocalamus asper (DA), Gigantochloa levis (GL), and Gigantochloa scortechinii (GS), were investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) under a nitrogen atmosphere. Each species was divided into three different portions: bottom, middle, and top, and fibres were manually extracted from the specified sections of each species. The thermal analysis of extracted bamboo fibres indicated that the thermal degradation behaviour of each bamboo species varied from bottom to top and between species. However, these variations were lower in DA species compared to GS, GL, and DP, because of minor differences between lignocellulosic components of its three portions. The top and middle portions of the four species degraded at a higher temperature range (314 to 379 °C) than the bottom portions. The results of this study suggest that DA and GS species, according to their thermal stabilities, are most suitable for use as reinforcement in composite materials.


2016 ◽  
Vol 721 ◽  
pp. 23-27 ◽  
Author(s):  
Ilya Kobykhno ◽  
Oleg Tolochko ◽  
Ekaterina Vasilyeva ◽  
Andrei Didenko ◽  
Danila Kuznetcov ◽  
...  

The paper experimentally studies the effect of meta and para- substitution of the amino groups in the diamine used in the synthesis of multiblock copolymers. The way for synthesis of new multiblock copolymers with the possibility of replacing the diamine in the polymer structure was shown. Thermal and mechanical properties of synthesized copolymers had been characterized by means of differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical thermal analysis and by nanoindentation and tensile test.


2020 ◽  
Vol 321 ◽  
pp. 05017
Author(s):  
M.G. de Mello ◽  
F.H. da Costa ◽  
R. Caram

The addition of Sn to the Ti-Mo system can diminish the formation of ω phase and slow down the precipitation kinetics of α phase due to the low atomic diffusivity of Sn atoms in Ti. To explore α phase precipitation in Ti-13Mo and Ti-13Mo-6Sn (wt.%) alloys, differential scanning calorimetry (DSC) was applied using different heating rates to determine ω phase dissolution, α phase precipitation and β transus temperatures. The DSC results were then used to determine the aging heat treatment temperatures. Samples were heat-treated at 600 °C for 1 h and 24 h to examine microstructure features. The addition of Sn to Ti-13Mo alloy was found to increase the β phase lattice parameter, increasing β transus temperatures and resulting in microstructures with heterogeneous and coarser α phase precipitation.


Sign in / Sign up

Export Citation Format

Share Document