Can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays?

2005 ◽  
Vol 31 (5) ◽  
pp. R95-R131 ◽  
Author(s):  
A M Hillas
2012 ◽  
Vol 19 (3) ◽  
pp. 351-364 ◽  
Author(s):  
P. Desiati ◽  
A. Lazarian

Abstract. Galactic cosmic rays are believed to be generated by diffusive shock acceleration processes in Supernova Remnants, and the arrival direction is likely determined by the distribution of their sources throughout the Galaxy, in particular by the nearest and youngest ones. Transport to Earth through the interstellar medium is expected to affect the cosmic ray properties as well. However, the observed anisotropy of TeV cosmic rays and its energy dependence cannot be explained with diffusion models of particle propagation in the Galaxy. Within a distance of a few parsec, diffusion regime is not valid and particles with energy below about 100 TeV must be influenced by the heliosphere and its elongated tail. The observation of a highly significant localized excess region of cosmic rays from the apparent direction of the downstream interstellar flow at 1–10 TeV energies might provide the first experimental evidence that the heliotail can affect the transport of energetic particles. In particular, TeV cosmic rays propagating through the heliotail interact with the 100–300 AU wide magnetic field polarity domains generated by the 11 yr cycles. Since the strength of non-linear convective processes is expected to be larger than viscous damping, the plasma in the heliotail is turbulent. Where magnetic field domains converge on each other due to solar wind gradient, stochastic magnetic reconnection likely occurs. Such processes may be efficient enough to re-accelerate a fraction of TeV particles as long as scattering processes are not strong. Therefore, the fractional excess of TeV cosmic rays from the narrow region toward the heliotail direction traces sightlines with the lowest smearing scattering effects, that can also explain the observation of a harder than average energy spectrum.


2021 ◽  
Vol 922 (1) ◽  
pp. 1
Author(s):  
Rebecca Diesing ◽  
Damiano Caprioli

Abstract Galactic cosmic rays (CRs) are accelerated at the forward shocks of supernova remnants (SNRs) via diffusive shock acceleration (DSA), an efficient acceleration mechanism that predicts power-law energy distributions of CRs. However, observations of nonthermal SNR emission imply CR energy distributions that are generally steeper than E −2, the standard DSA prediction. Recent results from kinetic hybrid simulations suggest that such steep spectra may arise from the drift of magnetic structures with respect to the thermal plasma downstream of the shock. Using a semi-analytic model of nonlinear DSA, we investigate the implications that these results have on the phenomenology of a wide range of SNRs. By accounting for the motion of magnetic structures in the downstream, we produce CR energy distributions that are substantially steeper than E −2 and consistent with observations. Our formalism reproduces both modestly steep spectra of Galactic SNRs (∝E −2.2) and the very steep spectra of young radio supernovae (∝E −3).


Author(s):  
G Morlino ◽  
P Blasi ◽  
E Peretti ◽  
P Cristofari

Abstract The origin of cosmic rays in our Galaxy remains a subject of active debate. While supernova remnant shocks are often invoked as the sites of acceleration, it is now widely accepted that the difficulties of such sources in reaching PeV energies are daunting and it seems likely that only a subclass of rare remnants can satisfy the necessary conditions. Moreover the spectra of cosmic rays escaping the remnants have a complex shape that is not obviously the same as the spectra observed at the Earth. Here we investigate the process of particle acceleration at the termination shock that develops in the bubble excavated by star clusters’ winds in the interstellar medium. While the main limitation to the maximum energy in supernova remnants comes from the need for effective wave excitation upstream so as to confine particles in the near-shock region and speed up the acceleration process, at the termination shock of star clusters the confinement of particles upstream in guaranteed by the geometry of the problem. We develop a theory of diffusive shock acceleration at such shock and we find that the maximum energy may reach the PeV region for powerful clusters in the high end of the luminosity tail for these sources. A crucial role in this problem is played by the dissipation of energy in the wind to magnetic perturbations. Under reasonable conditions the spectrum of the accelerated particles has a power law shape with a slope 4÷4.3, in agreement with what is required based upon standard models of cosmic ray transport in the Galaxy.


1997 ◽  
Vol 487 (1) ◽  
pp. 197-217 ◽  
Author(s):  
Donald C. Ellison ◽  
Luke O'C. Drury ◽  
Jean‐Paul Meyer

2018 ◽  
Vol 616 ◽  
pp. A57 ◽  
Author(s):  
G. E. Romero ◽  
A. L. Müller ◽  
M. Roth

Context. Starbursts are galaxies undergoing massive episodes of star formation. The combined effect of stellar winds from hot stars and supernova explosions creates a high-temperature cavity in the nuclear region of these objects. The very hot gas expands adiabatically and escapes from the galaxy creating a superwind which sweeps matter from the galactic disk. The superwind region in the halo is filled with a multi-phase gas with hot, warm, cool, and relativistic components. Aims. The shocks associated with the superwind of starbursts and the turbulent gas region of the bubble inflated by them might accelerate cosmic rays up to high energies. In this work we calculate the cosmic ray production associated with the superwind using parameters that correspond to the nearby southern starburst galaxy NGC 253, which has been suggested as a potential accelerator of ultra-high-energy cosmic rays. Methods. We evaluate the efficiency of both diffusive shock acceleration (DSA) and stochastic diffusive acceleration (SDA) in the superwind of NGC 253. We estimate the distribution of both hadrons and leptons and calculate the corresponding spectral energy distributions of photons. The electromagnetic radiation can help to discriminate between the different scenarios analyzed. Results. We find that the strong mass load of the superwind, recently determined through ALMA observations, strongly attenuates the efficiency of DSA in NGC 253, whereas SDA is constrained by the age of the starburst. Conclusions. We conclude that NGC 253 and similar starbursts can only accelerate iron nuclei beyond ~1018 eV under very special conditions. If the central region of the galaxy harbors a starved supermassive black hole of ~106 M⊙, as suggested by some recent observations, a contribution in the range 1018−1019 eV can be present for accretion rates ṁ ~ 10−3 in Eddington units. Shock energies of the order of 100 EeV might only be possible if very strong magnetic field amplification occurs close to the superwind.


Author(s):  
J. A. Kropotina ◽  
A. M. Bykov ◽  
V. E. Ermolina ◽  
S. M. Osipov ◽  
V. I. Romansky

Diffusive shock acceleration (DSA) is a very efficient mechanism of high energy particle acceleration in heliosphere, supernova remnants, stellar winds and gamma-ray bursts. We present microscopic simulation of particle injection and diffusive shock acceleration which is performed with 3D divergence-conserving second-order accurate hybrid code "Maximus". Hydrogen plasma with admixture of various heavy ions is considered. The injection process is found to start through shock reflection for both hydrogen and heavier ions. However, the reflection process depends on charge-to-mass ratio. While hydrogen ions reflection appears at shock ramp and is governed by the cross-shock potential, the reflection of ions with greater A=Z proceeds deeper down-stream via gyration in perpendicular magnetic field component. The heavy ions appear to inject into the DSA preferentially, but this chemical enhancement saturates with growing A=Z. The protons injection efficiency is estimated within various approaches, and it is shown that about 20% of initial flow energy goes into accelerated particles.


1994 ◽  
Vol 142 ◽  
pp. 937-944
Author(s):  
W. I. Axford

AbstractOur current understanding of acceleration processes for Galactic and extragalactic cosmic rays is briefly reviewed. Shock acceleration in supernova remnants remains the most favored process for cosmic rays up to the “knee” of the all-particle total energy spectrum at 1014 - 1015 eV. The highest energy particles are almost certainly extragalactic, and the most favored sources are associated with active galactic nuclei in one way or another. The intermediate region between rigidities of 1014 and 1018 V is more difficult to understand, although a galactic origin is preferred at present. The problem of making a smooth join in the spectrum at the knee suggests that these particles should not be considered to be independent of those at lower energies.Subject headings: acceleration of particles — cosmic rays — shock waves


2020 ◽  
Vol 496 (2) ◽  
pp. 2448-2461 ◽  
Author(s):  
Matteo Pais ◽  
Christoph Pfrommer ◽  
Kristian Ehlert ◽  
Maria Werhahn ◽  
Georg Winner

ABSTRACT Galactic cosmic rays (CRs) are believed to be accelerated at supernova remnant (SNR) shocks. In the hadronic scenario, the TeV gamma-ray emission from SNRs originates from decaying pions that are produced in collisions of the interstellar gas and CRs. Using CR-magnetohydrodynamic simulations, we show that magnetic obliquity-dependent shock acceleration is able to reproduce the observed TeV gamma-ray morphology of SNRs such as Vela Jr and SN1006 solely by varying the magnetic morphology. This implies that gamma-ray bright regions result from quasi-parallel shocks (i.e. when the shock propagates at a narrow angle to the upstream magnetic field), which are known to efficiently accelerate CR protons, and that gamma-ray dark regions point to quasi-perpendicular shock configurations. Comparison of the simulated gamma-ray morphology to observations allows us to constrain the magnetic coherence scale λB around Vela Jr and SN1006 to $\lambda _B \simeq 13_{-4.3}^{+13}$ pc and $\lambda _B \gt 200_{-40}^{+50}$ pc, respectively, where the ambient magnetic field of SN1006 is consistent with being largely homogeneous. We find consistent pure hadronic and mixed hadronic-leptonic models that both reproduce the multifrequency spectra from the radio to TeV gamma-rays and match the observed gamma-ray morphology. Finally, to capture the propagation of an SNR shock in a clumpy interstellar medium, we study the interaction of a shock with a dense cloud with numerical simulations and analytics. We construct an analytical gamma-ray model for a core collapse SNR propagating through a structured interstellar medium, and show that the gamma-ray luminosity is only biased by 30 per cent for realistic parameters.


2011 ◽  
Vol 75 (3) ◽  
pp. 299-301
Author(s):  
V. N. Zirakashvili ◽  
V. S. Ptuskin ◽  
E. S. Seo

Sign in / Sign up

Export Citation Format

Share Document