scholarly journals Steep Cosmic-Ray Spectra with Revised Diffusive Shock Acceleration

2021 ◽  
Vol 922 (1) ◽  
pp. 1
Author(s):  
Rebecca Diesing ◽  
Damiano Caprioli

Abstract Galactic cosmic rays (CRs) are accelerated at the forward shocks of supernova remnants (SNRs) via diffusive shock acceleration (DSA), an efficient acceleration mechanism that predicts power-law energy distributions of CRs. However, observations of nonthermal SNR emission imply CR energy distributions that are generally steeper than E −2, the standard DSA prediction. Recent results from kinetic hybrid simulations suggest that such steep spectra may arise from the drift of magnetic structures with respect to the thermal plasma downstream of the shock. Using a semi-analytic model of nonlinear DSA, we investigate the implications that these results have on the phenomenology of a wide range of SNRs. By accounting for the motion of magnetic structures in the downstream, we produce CR energy distributions that are substantially steeper than E −2 and consistent with observations. Our formalism reproduces both modestly steep spectra of Galactic SNRs (∝E −2.2) and the very steep spectra of young radio supernovae (∝E −3).

2012 ◽  
Vol 19 (3) ◽  
pp. 351-364 ◽  
Author(s):  
P. Desiati ◽  
A. Lazarian

Abstract. Galactic cosmic rays are believed to be generated by diffusive shock acceleration processes in Supernova Remnants, and the arrival direction is likely determined by the distribution of their sources throughout the Galaxy, in particular by the nearest and youngest ones. Transport to Earth through the interstellar medium is expected to affect the cosmic ray properties as well. However, the observed anisotropy of TeV cosmic rays and its energy dependence cannot be explained with diffusion models of particle propagation in the Galaxy. Within a distance of a few parsec, diffusion regime is not valid and particles with energy below about 100 TeV must be influenced by the heliosphere and its elongated tail. The observation of a highly significant localized excess region of cosmic rays from the apparent direction of the downstream interstellar flow at 1–10 TeV energies might provide the first experimental evidence that the heliotail can affect the transport of energetic particles. In particular, TeV cosmic rays propagating through the heliotail interact with the 100–300 AU wide magnetic field polarity domains generated by the 11 yr cycles. Since the strength of non-linear convective processes is expected to be larger than viscous damping, the plasma in the heliotail is turbulent. Where magnetic field domains converge on each other due to solar wind gradient, stochastic magnetic reconnection likely occurs. Such processes may be efficient enough to re-accelerate a fraction of TeV particles as long as scattering processes are not strong. Therefore, the fractional excess of TeV cosmic rays from the narrow region toward the heliotail direction traces sightlines with the lowest smearing scattering effects, that can also explain the observation of a harder than average energy spectrum.


Author(s):  
G Morlino ◽  
P Blasi ◽  
E Peretti ◽  
P Cristofari

Abstract The origin of cosmic rays in our Galaxy remains a subject of active debate. While supernova remnant shocks are often invoked as the sites of acceleration, it is now widely accepted that the difficulties of such sources in reaching PeV energies are daunting and it seems likely that only a subclass of rare remnants can satisfy the necessary conditions. Moreover the spectra of cosmic rays escaping the remnants have a complex shape that is not obviously the same as the spectra observed at the Earth. Here we investigate the process of particle acceleration at the termination shock that develops in the bubble excavated by star clusters’ winds in the interstellar medium. While the main limitation to the maximum energy in supernova remnants comes from the need for effective wave excitation upstream so as to confine particles in the near-shock region and speed up the acceleration process, at the termination shock of star clusters the confinement of particles upstream in guaranteed by the geometry of the problem. We develop a theory of diffusive shock acceleration at such shock and we find that the maximum energy may reach the PeV region for powerful clusters in the high end of the luminosity tail for these sources. A crucial role in this problem is played by the dissipation of energy in the wind to magnetic perturbations. Under reasonable conditions the spectrum of the accelerated particles has a power law shape with a slope 4÷4.3, in agreement with what is required based upon standard models of cosmic ray transport in the Galaxy.


1994 ◽  
Vol 142 ◽  
pp. 981-983
Author(s):  
Peter Duffy

AbstractA numerical solution to the problem of self-consistent diffusive shock acceleration is presented. The cosmic rays are scattered, accelerated and exert a back-reaction on the gas through their interaction with turbulence frozen into the local fluid frame. Using a grid with a hierarchical spacetime structure the physically interesting limit of Bohm diffusion (к ∝ pv), which introduces a wide range of diffusion lengthscales and acceleration timescales, can be studied. Some implications for modified shocks and particle acceleration are presented.Subject headings: acceleration of particles — cosmic rays — diffusion — shock waves


2021 ◽  
Author(s):  
Jannis Weimar ◽  
Paul Schattan ◽  
Martin Schrön ◽  
Markus Köhli ◽  
Rebecca Gugerli ◽  
...  

<p><span>Secondary cosmic-ray neutrons may be effectively used as a proxy for environmental hydrogen content at the hectare scale. These neutrons are generated mostly in the upper layers of the atmosphere within particle showers induced by galactic cosmic rays and other secondary particles. Below 15 km altitude their intensity declines as primary cosmic rays become less abundant and the generated neutrons are attenuated by the atmospheric air. At the earth surface, the intensity of secondary cosmic-ray neutrons heavily depends on their attenuation within the atmosphere, i.e. the amount of air the neutrons and their precursors pass through. Local atmospheric pressure measurements present an effective means to account for the varying neutron attenuation potential of the atmospheric air column above the neutron sensor. Pressure variations possess the second largest impact on the above-ground epithermal neutron intensity. Thus, using epithermal neutrons to infer environmental hydrogen content requires precise knowledge on how to correct for atmospheric pressure changes.</span></p><p><span>We conducted several short-term field experiments in saturated environments and at different altitudes, i.e. different pressure states to observe the neutron intensity pressure relation over a wide range of pressure values. Moreover, we used long-term measurements above glaciers in order to monitor the local dependence of neutron intensities and pressure in a pressure range typically found in Cosmic-Ray Neutron Sensing. The results are presented along with a broad Monte Carlo simulation campaign using MCNP 6. In these simulations, primary cosmic rays are released above the earth atmosphere at different cut-off rigidities capturing the whole evolution of cosmic-ray neutrons from generation to attenuation and annihilation. The simulated and experimentally derived pressure relation of cosmic-ray neutrons is compared to those of similar studies and assessed in the light of an appropriate atmospheric pressure correction for Cosmic-Ray Neutron Sensing.</span></p>


2002 ◽  
Vol 20 (8) ◽  
pp. 1247-1252 ◽  
Author(s):  
A. Struminsky

Abstract. Strong interplanetary disturbances may affect cosmic ray protons tremendously with energies less than 1 GeV, increasing their intensity by hundreds of percents, but they are not so effective for protons of higher energies. This energy limit is crucial to understand processes of cosmic ray propagation and acceleration in the heliosphere. The Forbush pre-increase and the effect of shock-associated particles observed on 20 October 1989 illustrate the problem. This is a rare event, when the energies of shock-associated particles measured by the GOES-7 satellite spread continuously to the neutron monitor energies. The Forbush pre-increase could be attributed to a single reflection of galactic cosmic rays from the magnetic wall observed at 12:00 UT. It had a very hard spectrum with maximum energy of modulation more than 10 GeV. The spectrum of shock-associated particles was soft and their maximum energy was less than 1 GeV. The problem of shock acceleration versus trapping is discussed for the 20 October 1989 event. It is argued that the shock-associated particles were accelerated near the flare site and then propagated to the Earth inside the trap between two magnetic walls at 12:00 UT and 17:00 UT.Key words. Interplanetary physics (cosmic rays; energetic particles; interplanetary magnetic fields)


2020 ◽  
Vol 642 ◽  
pp. A47
Author(s):  
Adrian Hanusch ◽  
Tatyana V. Liseykina ◽  
Mikhail A. Malkov

Context. In situ observations of energetic particles at the Earth’s bow-shock that are attainable by the satellite missions have fostered the opinion for a long time that electrons are most efficiently accelerated in a quasi-perpendicular shock geometry. However, shocks that are deemed to be responsible for the production of cosmic ray electrons and their radiation from sources such as supernova remnants are much more powerful and larger than the Earth’s bow-shock. Their remote observations and also in situ measurements at Saturn’s bow shock, that is, the strongest shock in the Solar System, suggest that electrons are accelerated very efficiently in the quasi-parallel shocks as well. Aims. In this paper we investigate the possibility that protons that are accelerated to high energies create sufficient wave turbulence, which is necessary for the electron preheating and subsequent injection into the diffusive shock acceleration in a quasi-parallel shock geometry. Methods. An additional test-particle-electron population, which is meant to be a low-density addition to the electron core-distribution on which the hybrid simulation operates, is introduced. Our purpose is to investigate how these electrons are energized by the “hybrid” electromagnetic field. The reduced spatial dimensionality allowed us to dramatically increase the number of macro-ions per numerical cell and achieve the converged results for the velocity distributions of test electrons. Results. We discuss the electron preheating mechanisms, which can make a significant part of thermal electrons accessible to the ion-driven waves observed in hybrid simulations. We find that the precursor wave field supplied by ions has a considerable potential to preheat the electrons before they are shocked at the subshock. Our results indicate that a downstream thermal equilibration of the hot test electrons and protons does not occur. Instead, the resulting electron-to-proton temperature ratio is a decreasing function of the shock Mach number, MA, which has a tendency for a saturation at high MA.


2015 ◽  
Vol 2 ◽  
pp. 57-62 ◽  
Author(s):  
M. Kroll ◽  
J. Becker Tjus ◽  
B. Eichmann ◽  
N. Nierstenhöfer

Abstract. It is generally believed that the cosmic ray spectrum below the knee is of Galactic origin, although the exact sources making up the entire cosmic ray energy budget are still unknown. Including effects of magnetic amplification, Supernova Remnants (SNR) could be capable of accelerating cosmic rays up to a few PeV and they represent the only source class with a sufficient non-thermal energy budget to explain the cosmic ray spectrum up to the knee. Now, gamma-ray measurements of SNRs for the first time allow to derive the cosmic ray spectrum at the source, giving us a first idea of the concrete, possible individual contributions to the total cosmic ray spectrum. In this contribution, we use these features as input parameters for propagating cosmic rays from its origin to Earth using GALPROP in order to investigate if these supernova remnants reproduce the cosmic ray spectrum and if supernova remnants in general can be responsible for the observed energy budget.


2021 ◽  
Vol 922 (1) ◽  
pp. 7
Author(s):  
Tsuyoshi Inoue ◽  
Alexandre Marcowith ◽  
Gwenael Giacinti ◽  
Allard Jan van Marle ◽  
Shogo Nishino

Abstract Galactic cosmic rays are believed to be accelerated at supernova remnants. However, whether supernova remnants can be PeV is still very unclear. In this work we argue that PeV cosmic rays can be accelerated during the early phase of a supernova blast-wave expansion in dense red supergiant winds. We solve in spherical geometry a system combining a diffusive–convection equation that treats cosmic-ray dynamics coupled to magnetohydrodynamics to follow gas dynamics. A fast shock expanding in a dense ionized wind is able to trigger fast, non-resonant streaming instability over day timescales and energizes cosmic rays even under the effect of p–p losses. We find that such environments produce PeV blast waves, although the maximum energy depends on various parameters such as the injection rate and mass-loss rate of the winds. Multi-PeV energies can be reached if the progenitor mass-loss rates are of the order of 10−3 M ⊙ yr−1. It has been recently proposed that, prior to the explosion, hydrogen-rich massive stars can produce enhanced mass-loss rates. These enhanced rates would then favor the production of a PeV phase in early times after shock breakout.


Sign in / Sign up

Export Citation Format

Share Document