X-ray computed microtomography of three-dimensional microcracks and self-healing in engineered cementitious composites

2014 ◽  
Vol 24 (1) ◽  
pp. 015021 ◽  
Author(s):  
Shuai Fan ◽  
Mo Li
Author(s):  
Melody A. Verges ◽  
Paul J. Schilling ◽  
Paul D. Herrington ◽  
Arun K. Tatiparthi

Techniques such as optical microscopy and X-radiography have provided useful information regarding damage in composite laminates, particular in therms of microcracking behavior in individual plies. This focuses on the investigation of microcracking and damage evolution in loaded composite laminates via X-ray computed microtomography. The main advantage in the use of such a technique is that damage within the composite can be assessed in three-dimensions without destruction of the composite. In this work, IM7/977–2, IM7/5555, and IM7/5276-1 coupons were uniaxially tested in a tensile substage, Graphs that convey microcracking density information as a function of applied load were created for [0/90/90/0] laminates. The three dimensional geometry and connectivity of microcracks and other damage in these samples were investigated through microtomographic reconstruction.


2021 ◽  
Vol 11 ◽  
Author(s):  
Dylan H. Jones ◽  
Brian S. Atkinson ◽  
Alexander Ware ◽  
Craig J. Sturrock ◽  
Anthony Bishopp ◽  
...  

Quantification of anatomical and compositional features underpins both fundamental and applied studies of plant structure and function. Relatively few non-invasive techniques are available for aquatic plants. Traditional methods such as sectioning are low-throughput and provide 2-dimensional information. X-ray Computed Microtomography (μCT) offers a non-destructive method of three dimensional (3D) imaging in planta, but has not been widely used for aquatic species, due to the difficulties in sample preparation and handling. We present a novel sample handling protocol for aquatic plant material developed for μCT imaging, using duckweed plants and turions as exemplars, and compare the method against existing approaches. This technique allows for previously unseen 3D volume analysis of gaseous filled spaces, cell material, and sub-cellular features. The described embedding method, utilizing petrolatum gel for sample mounting, was shown to preserve sample quality during scanning, and to display sufficiently different X-ray attenuation to the plant material to be easily differentiated by image analysis pipelines. We present this technique as an improved method for anatomical structural analysis that provides novel cellular and developmental information.


2021 ◽  
Vol 58 (1) ◽  
pp. 93-104
Author(s):  
Marco Castiello ◽  
Anna Jerve ◽  
Maria Grace Burton ◽  
Matt Friedman ◽  
Martin D. Brazeau

Petalichthyid and “acanthothoracid” placoderms have taken pivotal positions in the debate on placoderm — and, by extension, jawed vertebrate — relationships owing to perceived similarities with certain jawless vertebrates. Neurocranial characters are integral to current hypotheses of early gnathostome relationships. Here, we describe the three-dimensionally preserved neurocranial anatomy of the petalichthyid placoderm Ellopetalichthys scheii (Kiær, 1915), from the Middle Devonian (early Eifelian) of Ellesmere Island, Canada. Using X-ray computed microtomography, we generated three-dimensional reconstructions of the endocranial surfaces, orbital walls, and cranial endocavity. These reconstructions verify the absence of a crus commune of the skeletal labyrinth and the complex shape of the petalichthyid endolympathic duct. Details of the craniothoracic joint and occipital musculature fossae help resolve the problematic comparative anatomy of the occipital surface of petalichthyids. These new data highlight similarities with arthrodire placoderms, consistent with older hypotheses of a sister-group relationship between petalichthyids and that clade.


Zoomorphology ◽  
2011 ◽  
Vol 130 (2) ◽  
pp. 85-95 ◽  
Author(s):  
Stefania Puce ◽  
Daniela Pica ◽  
Lucia Mancini ◽  
Francesco Brun ◽  
Alessandro Peverelli ◽  
...  

Planta ◽  
2007 ◽  
Vol 226 (3) ◽  
pp. 559-570 ◽  
Author(s):  
Fernando Mendoza ◽  
Pieter Verboven ◽  
Hibru K. Mebatsion ◽  
Greet Kerckhofs ◽  
Martine Wevers ◽  
...  

Holzforschung ◽  
2014 ◽  
Vol 68 (2) ◽  
pp. 223-227 ◽  
Author(s):  
Guanyun Peng ◽  
Zehui Jiang ◽  
Xing’e Liu ◽  
Benhua Fei ◽  
Shumin Yang ◽  
...  

Abstract Bamboo is one of the world’s fastest growing plants. They reach a final height of 15–40 m during a period of 40–120 days. The full height is reached by intercalary growth of each node. However, it is very difficult to detect the complex vascular system in a bamboo node using traditional methods. X-ray computed microtomography (μCT) is a noninvasive novel approach to the three-dimensional (3D) visualization and quantification of biological structures. In the present article, μCT has been applied to provide insights into the internal structure of bamboo node, where three branches are connected. The picture obtained could hardly be obtained by any other means. The bamboo nodal characteristics of three transverse and axial sections are presented. The complex 3D network of vascular bundles has been directly obtained for the first time.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7780
Author(s):  
Min Xu ◽  
Lingjun Guo ◽  
Hanhui Wang

A SiC ceramic coating was prepared on carbon/carbon composites by pack cementation. The phase composition and microstructure of the coated specimens were characterized using X-ray diffraction instrument and scanning electron microscope. The results showed that the mass-loss percentage of the coated specimen was 9.5% after being oxidized for 20 h. The oxidation failure of the SiC ceramic coating at 1773 K was analysed by non-destructive X-ray computed tomography. The effective self-healing of cracks with widths below 12.7 μm introduced during the coating preparation process and generated while the specimens cooled down from the high oxidation temperature prevented the oxidation of carbon/carbon composites. X-ray computed tomography was used to obtain three-dimensional images revealing internal damage caused by spallation and open holes on the coating. Stress induced by heating and cooling caused the formation, growth and coalescence of cracks, which in turn led to exfoliation of the coating and subsequent failure of oxidation protection.


Author(s):  
I.V. Yazynina ◽  
◽  
E.V. Shelyago ◽  
A.A. Abrosimov ◽  
N.E. Grachev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document