Tunable acoustic waveguide based on vibro-acoustic metamaterials with shunted piezoelectric unit cells

2015 ◽  
Vol 24 (10) ◽  
pp. 105018 ◽  
Author(s):  
Byung-Jin Kwon ◽  
Jin-Young Jung ◽  
Dooho Lee ◽  
Kwang-Chun Park ◽  
Il-Kwon Oh
2018 ◽  
Vol 29 (12) ◽  
pp. 2677-2692 ◽  
Author(s):  
Wangbai Pan ◽  
Guoan Tang ◽  
Jiong Tang

Acoustic metamaterials with unit cells that are integrated with piezoelectric transducer circuitry exhibit interesting band gap behaviors that can be used for wave/vibration manipulation. This research reports the evaluation of uncertainty effects to a typical piezoelectric metamaterial, where uncertainties in geometry/configuration and in circuitry elements are taken into consideration. Monte Carlo–type analysis is performed to assess the band gap features under these uncertainties. In order to facilitate tractable computation in uncertainty analysis, order-reduced modeling of the electro-mechanically integrated system is formulated. The component mode synthesis–based order-reduced modeling increases the computational efficiency significantly while maintaining good accuracy. Results show that the band gap behavior is generally less sensitive to configuration uncertainty but can be greatly affected by circuitry parameter uncertainty. These results can be used to guide the design and synthesis of piezoelectric metamaterials, and the method developed can be applied to the uncertainty quantification of other types of metamaterials.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1457
Author(s):  
Qi Li ◽  
Ke Wu ◽  
Mingquan Zhang

Pentamode metamaterials have been receiving an increasing amount of interest due to their water-like properties. In this paper, a two-dimensional composite pentamode metamaterial of rectangular unit cell is proposed. The unit cells can be classified into two groups, one with uniform arms and the other with non-uniform arms. Phononic band structures of the unit cells were calculated to derive their properties. The unit cells can be pentamode metamaterials that permit acoustic wave travelling or have a total band gap that impedes acoustic wave propagation by varying the structures. The influences of geometric parameters and materials of the composed elements on the effective velocities and anisotropy were analyzed. The metamaterials can be used for acoustic wave control under water. Simulations of materials with different unit cells were conducted to verify the calculated properties of the unit cells. The research provides theoretical support for applications of the pentamode metamaterials.


Author(s):  
Ashkan Ghanbarzadeh-Dagheyan ◽  
Ali Molaei ◽  
Juan Heredia-Juesas ◽  
Jose Angel Martinez-Lorenzo

Acoustic metamaterials have been proposed for numerous applications including subwavelength imaging, impedance matching, and lensing. Yet, their application in compressive sensing and imaging has not been fully investigated. When metamaterials are used as resonators at certain frequencies, they can generate random radiation patterns in the transmitted and received waves to and from a target. Compressive sensing favors such randomness inasmuch as it can increase incoherence by decreasing the amount of mutual information between any two different measurements. This study aims at assessing whether the use of resonating metamaterial unit cells in a single-layered array between a number of ultrasound transceivers and targets can improve the sensing capacity, point-spread function of the sensing array (their beam focusing ability), and imaging performance in pointlike target detection. The theoretical results are promising and can open the way for more efficient metamaterial designs with the aim of enhancing ultrasound imaging with lower number of transceivers compared to the regular systems.


Author(s):  
Phanisri P. Pratapa ◽  
Phanish Suryanarayana ◽  
Glaucio H. Paulino

We study the wave propagation behavior in Miura-ori patterns by using the Bloch-wave analysis framework. Our investigation focuses on acoustic bandgaps that act as stopping bands for wave propagation at certain frequencies in periodic solids or structures. We show that bandgaps can be created in two-dimensional periodic Miura-ori patterns by introducing material inhomogeneity. First, we perform Bloch-wave analysis of homogeneous Miura-ori patterns with finite panel rigidity and find that no bandgaps are present. We then introduce bandgaps by making the pattern non-uniform — by changing the mass and axial rigidity of origami panels of alternating unit cells. We discuss the dependence of the magnitude of the bandgap on the contrast between material properties. We find that higher magnitudes of bandgaps are possible by using higher contrast ratios (mass and stiffness). These observations indicate the potential of origami-based patterns to be useful as acoustic metamaterials for vibration control.


Author(s):  
Qian Dong ◽  
Xiaolei Song ◽  
Subhrodeep Ray ◽  
Haijun Liu

Abstract Membrane-based acoustic metamaterials have been reported to achieve 100% absorption, the acoustic analogue of photonic black-hole. However, the bandwidth is usually very narrow around some local resonance frequency, which limits its practical use. To address this limitation and achieve a broadband absorption, this paper first establishes a theoretical framework for unit cells of air-backed diaphragms, modeled as an equivalent mass-spring-dashpot system. Based on the impedance match principle, three different approaches are numerically investigated by tuning the cavity length, the static pressure in the cavity, and the effective damping of perforated plates. A prototype with polyimide diaphragm and 3D printed substrate is then fabricated and characterized using an acoustic impedance tube. Preliminary experiments show the feasibility to achieve an absorption bandwidth of ∼200 Hz at center frequency of 1.45 kHz. This work pays the way for developing a sub-wavelength light weight broadband acoustic absorber for a variety of applications in noise control.


Author(s):  
Rogelio Gracia´ ◽  
Daniel Torrent ◽  
Jose´ Sa´nchez-Dehesa

The t matrix of a hole in an acoustic waveguide is here obtained and applied to study the scattering of sound waves propagating inside a waveguide. It is found that a hole drilled in a waveguide behaves as a cylindrical unit whose dynamical mass density is lower than that of the surrounded background. This property has been used here to design an acoustic refractive lens. Numerical experiments based on multiple scattering simulations confirm the sound focusing by the designed device.


2021 ◽  
Author(s):  
◽  
Huy Nguyen

Acoustic metamaterials have been studied intensively recently since they can expose unnatural-born properties, potentially breaking the capacity limits of conventional acoustic materials. Since these interesting properties are mostly observed around metamaterials' local resonances/anti-resonance, resonance-based acoustic metamaterials are most popular in developing metamaterials. Employing resonance-based unnatural born properties such as effective negative mass density, effective negative bulk modulus, and acoustic hyper-damping on designing noise control solutions can give excellent devices showing such high performance that conventional acoustic material cannot achieve. This dissertation is an effort to employ acoustic metamaterials in designing efficient noise control. First, membrane-type acoustic metamaterials (MAM) will be employed to design a lightweight acoustic panel with high sound transmission loss (STL) in broadband at low frequencies. Negative density at around the anti-resonance of MAM gives it high capability on blocking sound. A double MAM-layer structure is proposed to double the STL performance of unit cells theoretically. Therein, simulation by using COMSOL Multiphysics is the main tool to optimize the unit cell design, panel structure, and effect of panel frame's vibration. Fabrication of the optimal design and experiments are also conducted to verify the calculation and simulation predictions. In addition to the acoustic panel, MAM is used to design a highly efficient acoustic energy harvester working at low frequencies. A magnet coin is deployed close to a magnet coil attached to the mass of MAM. The maximum oscillation of the coil due to MAM's first local resonance will induce a strong electric current inside the coil. Hence, energy can be harvested by an external resistor representing loads of harvesting devices. A complete theoretical model of the harvester is also developed in order to optimize its performance. Multiphysics simulation is conducted to verify the theoretical predictions. Besides MAM, Helmholtz has been used to design a high-performance and broadband acoustic silencer. Specifically, five slit-type Helmholtz resonators, which possess a massive viscous area, are packed together to create a single-layer silencer. In turn, two single-layer silencers are combined to form a double-layer silencer, which in theory double performance on noise blocking of the single-layer silencer. Theoretical models of slit-type Helmholtz resonators and silencers are developed completely and well validated with simulation and experimental results. Finally, Fano resonance resulting from the coupling between resonant and non-resonant channels will be explored and employed to design an ultra-broadband acoustic barrier with high ventilation. The resonant channel is generally represented a space-coiling channel, and the non-resonant channel represents ventilation or a straight and short channel. First, the formation of coupling Fano resonance will be theoretically addressed. Subsequently, acoustic hyper-damping is proposed by integrating thin acoustic foams into velocity anti-nodes in the resonant channel. In the end, an ultra-broadband acoustic barrier with high ventilation and STL is designed by employing three rows of hyper-dampened unit cells. Fabrication and experiment also are conducted to verify the simulation prediction.


2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Ashkan Ghanbarzadeh-Dagheyan ◽  
Ali Molaei ◽  
Juan Heredia-Juesas ◽  
Jose Angel Martinez-Lorenzo

Abstract Acoustic metamaterials have been proposed for numerous applications including subwavelength imaging, impedance matching, and lensing. Yet, their application in compressive sensing and imaging has not been fully investigated. When metamaterials are used as resonators at certain frequencies, they can generate random radiation patterns in the transmitted waves from the transducers and received waves from a target. Compressive sensing favors such randomness inasmuch as it can increase incoherence by decreasing the amount of mutual information between any two different measurements. This study aims at assessing whether the use of resonating metamaterial unit cells in a single-layered non-optimized array between a number of ultrasound transceivers and targets can improve the sensing capacity, point-spread function of the sensing array (their beam focusing ability), and imaging performance in point-like target detection. The theoretical results are promising and can open the way for more efficient metamaterial designs with the aim of enhancing ultrasound imaging with lower number of transceivers compared to the regular systems.


Sign in / Sign up

Export Citation Format

Share Document