Spherical nano-indentation of a hard thin film/soft substrate layered system: II. Evolution of stress and strain fields

Author(s):  
Yo-Han Yoo ◽  
Woong Lee ◽  
Hyunho Shin
2010 ◽  
Vol 38 (4) ◽  
pp. 286-307
Author(s):  
Carey F. Childers

Abstract Tires are fabricated using single ply fiber reinforced composite materials, which consist of a set of aligned stiff fibers of steel material embedded in a softer matrix of rubber material. The main goal is to develop a mathematical model to determine the local stress and strain fields for this isotropic fiber and matrix separated by a linearly graded transition zone. This model will then yield expressions for the internal stress and strain fields surrounding a single fiber. The fields will be obtained when radial, axial, and shear loads are applied. The composite is then homogenized to determine its effective mechanical properties—elastic moduli, Poisson ratios, and shear moduli. The model allows for analysis of how composites interact in order to design composites which gain full advantage of their properties.


Polymer ◽  
1989 ◽  
Vol 30 (8) ◽  
pp. 1456-1461 ◽  
Author(s):  
Xue-qin Wang ◽  
Norman Brown

2012 ◽  
Vol 1477 ◽  
Author(s):  
Horacio V. Estrada

ABSTRACTThin film bismuth piezoresistors, defined on oxidized silicon wafers, are investigated as a function of their orientation for their eventual integration on micro-electro-mechanical (MEMS) microsensors. Bismuth’s piezoresistance (or elasto-resistance) is experimentally investigated to accurately determine its longitudinal and transverse strain sensitivities. Whisker-shaped resistive elements defined on different orientations (from 0o, the beam’s main strain axis, to 90o, perpendicular to that axis) undergo changes of resistance (ΔR), associated with the induced strains on silicon cantilevers beam’s surface when these are mechanically loaded under pure bending stress conditions. For Bi-resistors, the traditional gage factor concept, (ΔR/Ro)/εl, is found to be equal to +16 and +33, for elements oriented along 0 and 90o, respectively, considerably larger than those for metals or metal alloys. These high sensitivity values and the “unusual” positive, higher value for the 90o (perpendicular) resistors can be of considerable interest for microsensors applications. The results of this study enable us to precisely determine the bismuth’s longitudinal and transverse strain sensitivities that are calculated to be equal to +26 and +40.5 respectively. This experimental study is extended to explore the Bi-films’ response to bi-axial strain fields.


1983 ◽  
Vol 50 (4a) ◽  
pp. 789-794 ◽  
Author(s):  
K. C. Valanis ◽  
J. Fan

In this paper we present an analytical cum-numerical scheme, based on endochronic plasticity and the finite element formalism. The scheme is used to calculate the stress and elastoplastic strain fields in a plate loaded cyclically in its own plane along its outer edges and bearing two symmetrically disposed edge notches. One most important result that stands out is that while the external loading conditions are symmetric and periodic, the histories of stress and strain at the notch tip are neither symmetric nor periodic in character. In cyclic tension ratcheting phenomena at the tip of the notches prevail and a progressive change of the residual stress field at the notch line is shown to occur.


2008 ◽  
Vol 33-37 ◽  
pp. 969-974 ◽  
Author(s):  
Bong Bu Jung ◽  
Seong Hyun Ko ◽  
Hun Kee Lee ◽  
Hyun Chul Park

This paper will discuss two different techniques to measure mechanical properties of thin film, bulge test and nano-indentation test. In the bulge test, uniform pressure applies to one side of thin film. Measurement of the membrane deflection as a function of the applied pressure allows one to determine the mechanical properties such as the elastic modulus and the residual stress. Nano-indentation measurements are accomplished by pushing the indenter tip into a sample and then withdrawing it, recording the force required as a function of position. . In this study, modified King’s model can be used to estimate the mechanical properties of the thin film in order to avoid the effect of substrates. Both techniques can be used to determine Young’s modulus or Poisson’s ratio, but in both cases knowledge of the other variables is needed. However, the mathematical relationship between the modulus and Poisson's ratio is different for the two experimental techniques. Hence, achieving agreement between the techniques means that the modulus and Poisson’s ratio and Young’s modulus of thin films can be determined with no a priori knowledge of either.


1999 ◽  
Vol 119 (2) ◽  
pp. 67-72 ◽  
Author(s):  
Taeko Ando ◽  
Tetsuo Yoshioka ◽  
Mitsuhiro Shikida ◽  
Kazuo Sato ◽  
Tatsuo Kawabata

Sign in / Sign up

Export Citation Format

Share Document