Transition-metal adatoms on 2D-GaAs: a route to chiral magnetic 2D materials by design

Author(s):  
Alvaro González-García ◽  
William López-Pérez ◽  
Rafael González-Hernández ◽  
Cihan Bacaksiz ◽  
Milorad V Milosevic ◽  
...  
2021 ◽  
Vol 3 (1) ◽  
pp. 272-278
Author(s):  
Pilar G. Vianna ◽  
Aline dos S. Almeida ◽  
Rodrigo M. Gerosa ◽  
Dario A. Bahamon ◽  
Christiano J. S. de Matos

The scheme illustrates a monolayer transition-metal dichalcogenide on an epsilon-near-zero substrate. The substrate near-zero dielectric constant is used as the enhancement mechanism to maximize the SHG nonlinear effect on monolayer 2D materials.


Author(s):  
Sai Manoj Gali ◽  
David Beljonne

Transition Metal Dichalcogenides (TMDCs) are emerging as promising two-dimensional (2D) materials. Yet, TMDCs are prone to inherent defects such as chalcogen vacancies, which are detrimental to charge transport. Passivation of...


Nanoscale ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 3853-3859
Author(s):  
Ryosuke Mizuguchi ◽  
Yasuhiko Igarashi ◽  
Hiroaki Imai ◽  
Yuya Oaki

Lateral sizes of the exfoliated transition-metal–oxide nanosheets were predicted and controlled by the assistance of machine learning. 


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Daniil Marinov ◽  
Jean-François de Marneffe ◽  
Quentin Smets ◽  
Goutham Arutchelvan ◽  
Kristof M. Bal ◽  
...  

AbstractThe cleaning of two-dimensional (2D) materials is an essential step in the fabrication of future devices, leveraging their unique physical, optical, and chemical properties. Part of these emerging 2D materials are transition metal dichalcogenides (TMDs). So far there is limited understanding of the cleaning of “monolayer” TMD materials. In this study, we report on the use of downstream H2 plasma to clean the surface of monolayer WS2 grown by MOCVD. We demonstrate that high-temperature processing is essential, allowing to maximize the removal rate of polymers and to mitigate damage caused to the WS2 in the form of sulfur vacancies. We show that low temperature in situ carbonyl sulfide (OCS) soak is an efficient way to resulfurize the material, besides high-temperature H2S annealing. The cleaning processes and mechanisms elucidated in this work are tested on back-gated field-effect transistors, confirming that transport properties of WS2 devices can be maintained by the combination of H2 plasma cleaning and OCS restoration. The low-damage plasma cleaning based on H2 and OCS is very reproducible, fast (completed in a few minutes) and uses a 300 mm industrial plasma etch system qualified for standard semiconductor pilot production. This process is, therefore, expected to enable the industrial scale-up of 2D-based devices, co-integrated with silicon technology.


Nanoscale ◽  
2021 ◽  
Author(s):  
Conor Patrick Cullen ◽  
Cormac Ó Coileáin ◽  
John B McManus ◽  
Oliver Hartwig ◽  
David McCloskey ◽  
...  

Group-10 transition metal dichalcogenides (TMDs) are rising in prominence within the highly innovative field of 2D materials. While PtS2 has been investigated for potential electronic applications, due to its high...


2017 ◽  
Vol 29 (43) ◽  
Author(s):  
Vidya Kochat ◽  
Amey Apte ◽  
Jordan A. Hachtel ◽  
Hiroyuki Kumazoe ◽  
Aravind Krishnamoorthy ◽  
...  

2019 ◽  
Vol 116 (42) ◽  
pp. 20844-20849 ◽  
Author(s):  
Cong Su ◽  
Zongyou Yin ◽  
Qing-Bo Yan ◽  
Zegao Wang ◽  
Hongtao Lin ◽  
...  

Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines n-CmH2m+1NH2, with m = 4 through 11, are highly effective in protecting the optoelectronic properties of these materials, such as black phosphorus (BP) and transition-metal dichalcogenides (TMDs: WS2, 1T′-MoTe2, WTe2, WSe2, TaS2, and NbSe2). As a representative example, n-hexylamine (m = 6) can be applied in the form of thin molecular monolayers on BP flakes with less than 2-nm thickness and can prolong BP’s lifetime from a few hours to several weeks and even months in ambient environments. Characterizations combined with our theoretical analysis show that the thin monolayers selectively sift out water molecules, forming a drying layer to achieve the passivation of the protected 2D materials. The monolayer coating is also stable in air, H2 annealing, and organic solvents, but can be removed by certain organic acids.


2021 ◽  
Author(s):  
Dibyendu Ghosh ◽  
Pooja Devi ◽  
Praveen Kumar

Abstract Intercalation is basically a process of putting one or multiple guest elements in the van der Waals (vdW) gaps of a parent crystal in a reversible way. Two-dimensional (2D) materials showed great promise for different intercalant species ranging from organic molecules to ions. Apart from graphene, the most studied 2D materials are the transition metal di-chalcogenides (TMDs). The intercalation in TMDs has reinvented the strategies beyond graphene in 2D structure in material science, materials engineering, chemistry, and physics. This review deals with the possible mechanism as well as the window that intercalation can open for compact and ultrathin device technology. Modulation of the physicochemical properties in the intercalated TMDs has been thoroughly reviewed. Finally, the device performance, especially energy storage and energy harvesting devices, has been evaluated, and specific issues have been chalked out that need attention for future development.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5843
Author(s):  
Rosaria Verduci ◽  
Antonio Agresti ◽  
Valentino Romano ◽  
Giovanna D’Angelo

The last decade has witnessed the advance of metal halide perovskites as a promising low-cost and efficient class of light harvesters used in solar cells (SCs). Remarkably, the efficiency of lab-scale perovskite solar cells (PSCs) reached a power conversion efficiency of 25.5% in just ~10 years of research, rivalling the current record of 26.1% for Si-based PVs. To further boost the performances of PSCs, the use of 2D materials (such as graphene, transition metal dichalcogenides and transition metal carbides, nitrides and carbonitrides) has been proposed, thanks to their remarkable optoelectronic properties (that can be tuned with proper chemical composition engineering) and chemical stability. In particular, 2D materials have been demonstrated as promising candidates for (i) accelerating hot carrier transfer across the interfaces between the perovskite and the charge extraction layers; (ii) improving the crystallization of the perovskite layers (when used as additives in the precursor solution); (iii) favoring electronic bands alignment through tuning of the work function. In this mini-review, we discuss the physical mechanisms underlying the increased efficiency of 2D material-based PSCs, focusing on the three aforementioned effects.


Sign in / Sign up

Export Citation Format

Share Document