scholarly journals Non-Markovian transients in transport across chiral quantum wires using space-time non-equilibrium Green functions

Author(s):  
Nikhil Danny Babu ◽  
Girish Sampath Setlur

Abstract We study a system of two non-interacting quantum wires with fermions of opposite chirality with a point contact junction at the origin across which tunneling can take place when an arbitrary time-dependent bias between the wires is applied. We obtain the exact dynamical non-equilibrium Green function by solving Dyson’s equation analytically. Both the space-time dependent two and four-point functions are written down in a closed form in terms of simple functions of position and time. This allows us to obtain, among other things, the I-V characteristics for an arbitrary time-dependent bias. Our method is a superior alternative to competing approaches to non-equilibrium as we are able to account for transient phenomena as well as the steady state. We study the approach to steady state by computing the time evolution of the equal-time one-particle Green function. Our method can be easily applied to the problem of a double barrier contact whose internal properties can be adjusted to induce resonant tunneling leading to a conductance maximum. We then consider the case of a finite bandwidth in the point contact and calculate the non-equilibrium transport properties which exhibit non-Markovian behaviour. When a subsequently constant bias is suddenly switched on, the current shows a transient build up before approaching its steady state value in contrast to the infinite bandwidth case. This transient property is consistent with numerical simulations of lattice systems using time-dependent DMRG (tDMRG) suggesting thereby that this transient build up is merely due to the presence of a short distance cutoff in the problem description and not on the other details.

1993 ◽  
Vol 256 ◽  
pp. 561-605 ◽  
Author(s):  
Phillip M. Lovalenti ◽  
John F. Brady

The hydrodynamic force acting on a rigid spherical particle translating with arbitrary time-dependent motion in a time-dependent flowing fluid is calculated to O(Re) for small but finite values of the Reynolds number, Re, based on the particle's slip velocity relative to the uniform flow. The corresponding expression for an arbitrarily shaped rigid particle is evaluated for the case when the timescale of variation of the particle's slip velocity is much greater than the diffusive scale, a2/v, where a is the characteristic particle dimension and v is the kinematic viscosity of the fluid. It is found that the expression for the hydrodynamic force is not simply an additive combination of the results from unsteady Stokes flow and steady Oseen flow and that the temporal decay to steady state for small but finite Re is always faster than the t-½ behaviour of unsteady Stokes flow. For example, when the particle accelerates from rest the temporal approach to steady state scales as t-2.


1964 ◽  
Vol 14 (2) ◽  
pp. 109-128 ◽  
Author(s):  
F. Jackson

In a recent paper (1) Portnov used a form of Poisson integral to find the exact solution for the temperature distribution in a freezing semi-infinite slab occupying the region x > 0, and having an arbitrary time dependent temperature applied at the face x = 0. Previously, Boley (2) had used a method based on Duhamel's theorem to find solutions for problems involving melting, in both finite and semi-finite regions, caused by time dependent heat fluxes. Steady-state solutions have been investigated by Landau (3), Masters (4) and others (5).


2020 ◽  
Vol 45 (2) ◽  
pp. 121-132
Author(s):  
Daniel P. Sheehan

AbstractCanonical statistical mechanics hinges on two quantities, i. e., state degeneracy and the Boltzmann factor, the latter of which usually dominates thermodynamic behaviors. A recently identified phenomenon (supradegeneracy) reverses this order of dominance and predicts effects for equilibrium that are normally associated with non-equilibrium, including population inversion and steady-state particle and energy currents. This study examines two thermodynamic paradoxes that arise from supradegeneracy and proposes laboratory experiments by which they might be resolved.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 552 ◽  
Author(s):  
Thomas Parr ◽  
Noor Sajid ◽  
Karl J. Friston

The segregation of neural processing into distinct streams has been interpreted by some as evidence in favour of a modular view of brain function. This implies a set of specialised ‘modules’, each of which performs a specific kind of computation in isolation of other brain systems, before sharing the result of this operation with other modules. In light of a modern understanding of stochastic non-equilibrium systems, like the brain, a simpler and more parsimonious explanation presents itself. Formulating the evolution of a non-equilibrium steady state system in terms of its density dynamics reveals that such systems appear on average to perform a gradient ascent on their steady state density. If this steady state implies a sufficiently sparse conditional independency structure, this endorses a mean-field dynamical formulation. This decomposes the density over all states in a system into the product of marginal probabilities for those states. This factorisation lends the system a modular appearance, in the sense that we can interpret the dynamics of each factor independently. However, the argument here is that it is factorisation, as opposed to modularisation, that gives rise to the functional anatomy of the brain or, indeed, any sentient system. In the following, we briefly overview mean-field theory and its applications to stochastic dynamical systems. We then unpack the consequences of this factorisation through simple numerical simulations and highlight the implications for neuronal message passing and the computational architecture of sentience.


RSC Advances ◽  
2021 ◽  
Author(s):  
Guanzhao Wen ◽  
Xianshao Zou ◽  
Rong Hu ◽  
Jun Peng ◽  
Zhifeng Chen ◽  
...  

Ground- and excited-states properties of N2200 have been studied by steady-state and time-resolved spectroscopies as well as time-dependent density functional theory calculations.


2015 ◽  
Vol 12 (02) ◽  
pp. 249-276
Author(s):  
Tomonari Watanabe

We study the global existence and the derivation of decay estimates for nonlinear wave equations with a space-time dependent dissipative term posed in an exterior domain. The linear dissipative effect may vanish in a compact space region and, moreover, the nonlinear terms need not be in a divergence form. In order to establish higher-order energy estimates, we introduce an argument based on a suitable rescaling. The proposed method is useful to control certain derivatives of the dissipation coefficient.


1988 ◽  
Vol 8 (5) ◽  
pp. 1957-1969 ◽  
Author(s):  
R A Shapiro ◽  
D Herrick ◽  
R E Manrow ◽  
D Blinder ◽  
A Jacobson

As an approach to understanding the structures and mechanisms which determine mRNA decay rates, we have cloned and begun to characterize cDNAs which encode mRNAs representative of the stability extremes in the poly(A)+ RNA population of Dictyostelium discoideum amoebae. The cDNA clones were identified in a screening procedure which was based on the occurrence of poly(A) shortening during mRNA aging. mRNA half-lives were determined by hybridization of poly(A)+ RNA, isolated from cells labeled in a 32PO4 pulse-chase, to dots of excess cloned DNA. Individual mRNAs decayed with unique first-order decay rates ranging from 0.9 to 9.6 h, indicating that the complex decay kinetics of total poly(A)+ RNA in D. discoideum amoebae reflect the sum of the decay rates of individual mRNAs. Using specific probes derived from these cDNA clones, we have compared the sizes, extents of ribosome loading, and poly(A) tail lengths of stable, moderately stable, and unstable mRNAs. We found (i) no correlation between mRNA size and decay rate; (ii) no significant difference in the number of ribosomes per unit length of stable versus unstable mRNAs, and (iii) a general inverse relationship between mRNA decay rates and poly(A) tail lengths. Collectively, these observations indicate that mRNA decay in D. discoideum amoebae cannot be explained in terms of random nucleolytic events. The possibility that specific 3'-structural determinants can confer mRNA instability is suggested by a comparison of the labeling and turnover kinetics of different actin mRNAs. A correlation was observed between the steady-state percentage of a given mRNA found in polysomes and its degree of instability; i.e., unstable mRNAs were more efficiently recruited into polysomes than stable mRNAs. Since stable mRNAs are, on average, "older" than unstable mRNAs, this correlation may reflect a translational role for mRNA modifications that change in a time-dependent manner. Our previous studies have demonstrated both a time-dependent shortening and a possible translational role for the 3' poly(A) tracts of mRNA. We suggest, therefore, that the observed differences in the translational efficiency of stable and unstable mRNAs may, in part, be attributable to differences in steady-state poly(A) tail lengths.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Aruna Rajagopal ◽  
Larus Thorlacius

Abstract A Lifshitz black brane at generic dynamical critical exponent z > 1, with non-zero linear momentum along the boundary, provides a holographic dual description of a non-equilibrium steady state in a quantum critical fluid, with Lifshitz scale invariance but without boost symmetry. We consider moving Lifshitz branes in Einstein-Maxwell-Dilaton gravity and obtain the non-relativistic stress tensor complex of the dual field theory via a suitable holographic renormalisation procedure. The resulting black brane hydrodynamics and thermodynamics are a concrete holographic realization of a Lifshitz perfect fluid with a generic dynamical critical exponent.


Sign in / Sign up

Export Citation Format

Share Document