A technique for high-precision drift correction in electron microscopes

2021 ◽  
Vol 32 (12) ◽  
pp. 125403
Author(s):  
Mitsutoshi Kobayashi ◽  
Atsushi Miyamoto ◽  
Maki Tanaka ◽  
Yoshinobu Hoshino
Author(s):  
J.N. Turner ◽  
D.P. Barnard ◽  
G. Matuszek ◽  
C.W. See

A high precision specimen stage is essential for the accurate recording of images for three-dimensional reconstruction. The efficient calculation and resolution of a “tomographic type” three-dimensional reconstruction is influenced by the precision of the angular tilt settings. The ability to identify structures at low magnification and later return to them for detailed study at high magnification is crucial to the efficient study of structures by serial section reconstruction, and is greatly aided by a precise, repeatable translation stage. To study such problems, we have designed and fabricated a single-tilt specimen stage for our high-voltage electron microscope (HVEM), which represents a different design philosophy to that usually employed in side entry stages for transmission electron microscopes.


Microscopy ◽  
2014 ◽  
Vol 63 (4) ◽  
pp. 301-312 ◽  
Author(s):  
Shigeto Isakozawa ◽  
Sachihiko Tomonaga ◽  
Takahito Hashimoto ◽  
Norio Baba

2021 ◽  
Vol 29 (21) ◽  
pp. 34641
Author(s):  
Mingtao Shang ◽  
Zhiwei Zhou ◽  
Weibing Kuang ◽  
Yujie Wang ◽  
Bo Xin ◽  
...  

Microscopy ◽  
2020 ◽  
Author(s):  
Takeshi Kawasaki ◽  
Yoshio Takahashi ◽  
Toshiaki Tanigaki

Abstract Electron holography was invented for correcting aberrations of the lenses of electron microscopes. It was used to observe the atomic arrangements in crystals after decades of research. Then it was combined with a hardware aberration corrector to enable high-resolution and high-precision analysis. Its applications were further extended to magnetic observations with sub-nanometer resolution. High-resolution electron holography has become a powerful technique for observing electromagnetic distributions in functional materials.


Author(s):  
S.W. Hui ◽  
D.F. Parsons

The development of the hydration stages for electron microscopes has opened up the application of electron diffraction in the study of biological membranes. Membrane specimen can now be observed without the artifacts introduced during drying, fixation and staining. The advantages of the electron diffraction technique, such as the abilities to observe small areas and thin specimens, to image and to screen impurities, to vary the camera length, and to reduce data collection time are fully utilized. Here we report our pioneering work in this area.


Author(s):  
K. Tsuno ◽  
T. Honda ◽  
Y. Harada ◽  
M. Naruse

Developement of computer technology provides much improvements on electron microscopy, such as simulation of images, reconstruction of images and automatic controll of microscopes (auto-focussing and auto-correction of astigmatism) and design of electron microscope lenses by using a finite element method (FEM). In this investigation, procedures for simulating the optical properties of objective lenses of HREM and the characteristics of the new lens for HREM at 200 kV are described.The process for designing the objective lens is divided into three stages. Stage 1 is the process for estimating the optical properties of the lens. Firstly, calculation by FEM is made for simulating the axial magnetic field distributions Bzc of the lens. Secondly, electron ray trajectory is numerically calculated by using Bzc. And lastly, using Bzc and ray trajectory, spherical and chromatic aberration coefficients Cs and Cc are numerically calculated. Above calculations are repeated by changing the shape of lens until! to find an optimum aberration coefficients.


Author(s):  
R. F. Bils ◽  
W. F. Diller ◽  
F. Huth

Phosgene still plays an important role as a toxic substance in the chemical industry. Thiess (1968) recently reported observations on numerous cases of phosgene poisoning. A serious difficulty in the clinical handling of phosgene poisoning cases is a relatively long latent period, up to 12 hours, with no obvious signs of severity. At about 12 hours heavy lung edema appears suddenly, however changes can be seen in routine X-rays taken after only a few hours' exposure (Diller et al., 1969). This study was undertaken to correlate these early changes seen by the roengenologist with morphological alterations in the lungs seen in the'light and electron microscopes.Forty-two adult male and female Beagle dogs were selected for these exposure experiments. Treated animals were exposed to 94.5-107-5 ppm phosgene for 10 min. in a 15 m3 chamber. Roentgenograms were made of the thorax of each animal before and after exposure, up to 24 hrs.


Author(s):  
Godfrey C. Hoskins ◽  
V. Williams ◽  
V. Allison

The method demonstrated is an adaptation of a proven procedure for accurately determining the magnification of light photomicrographs. Because of the stability of modern electrical lenses, the method is shown to be directly applicable for providing precise reproducibility of magnification in various models of electron microscopes.A readily recognizable area of a carbon replica of a crossed-line diffraction grating is used as a standard. The same area of the standard was photographed in Phillips EM 200, Hitachi HU-11B2, and RCA EMU 3F electron microscopes at taps representative of the range of magnification of each. Negatives from one microscope were selected as guides and printed at convenient magnifications; then negatives from each of the other microscopes were projected to register with these prints. By deferring measurement to the print rather than comparing negatives, correspondence of magnification of the specimen in the three microscopes could be brought to within 2%.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document