scholarly journals No solitary waves in 2D gravity and capillary waves in deep water

Nonlinearity ◽  
2020 ◽  
Vol 33 (10) ◽  
pp. 5457-5476 ◽  
Author(s):  
Mihaela Ifrim ◽  
Daniel Tataru
2019 ◽  
Vol 871 ◽  
pp. 1028-1043
Author(s):  
M. Abid ◽  
C. Kharif ◽  
H.-C. Hsu ◽  
Y.-Y. Chen

The bifurcation of two-dimensional gravity–capillary waves into solitary waves when the phase velocity and group velocity are nearly equal is investigated in the presence of constant vorticity. We found that gravity–capillary solitary waves with decaying oscillatory tails exist in deep water in the presence of vorticity. Furthermore we found that the presence of vorticity influences strongly (i) the solitary wave properties and (ii) the growth rate of unstable transverse perturbations. The growth rate and bandwidth instability are given numerically and analytically as a function of the vorticity.


1971 ◽  
Vol 50 (2) ◽  
pp. 321-334 ◽  
Author(s):  
James Witting

The average changes in the structure of thermal boundary layers at the surface of bodies of water produced by various types of surface waves are computed. the waves are two-dimensional plane progressive irrotational waves of unchanging shape. they include deep-water linear waves, deep-water capillary waves of arbitrary amplitude, stokes waves, and the deep-water gravity wave of maximum amplitude.The results indicate that capillary waves can decrease mean temperature gradients by factors of as much as 9·0, if the average heat flux at the air-water interface is independent of the presence of the waves. Irrotational gravity waves can decrease the mean temperature gradients by factors no more than 1·381.Of possible pedagogical interest is the simplicity of the heat conduction equation for two-dimensional steady irrotational flows in an inviscid incompressible fluid if the velocity potential and the stream function are taken to be the independent variables.


2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Hongyi Yu ◽  
Tatiana Gambaryan-Roisman ◽  
Peter Stephan

The flow of thin falling liquid films is unstable to long-wave disturbances. The flow instability leads to development of waves at the liquid–gas interface. The effect of the waves on heat and mass transfer in falling liquid films is a subject of ongoing scientific discussion. In this work, numerical investigation of the wave dynamics has been performed using a modified volume-of-fluid (VOF) method for tracking the free surface. The surface tension is described using the continuum surface force (CSF) model. With low disturbance frequency, solitary waves of large amplitude are developed, which are preceded by low-amplitude capillary waves. With high disturbance frequency, low amplitude sinusoidal waves are developed. The waveforms dependent on the Reynolds number and disturbance frequency are summarized in a form of a regime map. A correlation describing the separation curve between the sinusoidal waves regime and solitary waves regime is proposed. The wave parameters (peak height, length, and propagation speed) are computed from the simulation results and compared with available experimental correlations in a wide range of parameters. The effects of the disturbance frequency and the plane inclination angle on the wave dynamics have been studied. The interaction of waves initiated by simultaneous disturbances of two different frequencies has been investigated. The heat transfer in the wavy film has been simulated for the constant wall temperature boundary condition. The effects of Prandtl number and disturbance frequency on local and global heat transfer parameters have been investigated. It has been shown that the influence of waves on heat transfer is significant for large Prandtl numbers in a specific range of disturbance frequencies.


2002 ◽  
Vol 43 (4) ◽  
pp. 513-524 ◽  
Author(s):  
Suma Debsarma ◽  
K.P. Das

AbstractFor a three-dimensional gravity capillary wave packet in the presence of a thin thermocline in deep water two coupled nonlinear evolution equations correct to fourth order in wave steepness are obtained. Reducing these two equations to a single equation for oblique plane wave perturbation, the stability of a uniform gravity-capillary wave train is investigated. The stability and instability regions are identified. Expressions for the maximum growth rate of instability and the wavenumber at marginal stability are obtained. The results are shown graphically.


Sign in / Sign up

Export Citation Format

Share Document