Impact identification on concrete panels using a surface-bonded smart piezoelectric module system

Author(s):  
Ayumi Manawadu ◽  
Pizhong Qiao

Abstract Timely identification of collision damage, especially in aging bridges, is critical for the safety of commuters. However, there is no efficient, cost-effective, in-situ technique to serve this purpose. Wave propagation-based structural health monitoring (SHM) using piezoelectric material is a promising alternative for remote sensing. To that end, this study aims to develop a wave propagation-based monitoring technique using surface-bonded smart piezoelectric modules (SPM) to determine the impact force, location, and projectile properties of low-velocity impacts on concrete panels. An impact source localization algorithm used in composite structures is adapted and simplified for concrete structures. This technique is validated using a combined experimental and numerical investigation, which shows good agreement with the actual impact source location. The impact force, projectile mass, and velocity is determined using a semi-theoretical-experimental technique based on Reed contact model. A special contact-SPM is fabricated and calibrated to determine the contact force at the impact location. The relationship between contact-SPM response and distributed-SPM response is determined using a drop-weight test with steel sphere. The peak contact force and contact duration are in good agreement with Reed contact model, although the latter overpredicts the given parameters. A simplified formula based on Reed contact model is used to inversely estimate the projectile velocity of a known mass and vice versa. Then, using pre-calibrated data, the impact force, projectile properties, and impact force-time distribution is determined using the response of distributed-SPM system. The technique is validated using an arbitrary steel sphere mass. As demonstrated in the combined experimental, theoretical, and numerical study, the proposed surface-bonded SPM system is capable of effectively identifying low-velocity impact incidents on concrete structures, which could potentially facilitate inexpensive, in-situ, real-time condition assessment.

Author(s):  
G. P. Tandon ◽  
J. Kang ◽  
R. Y. Kim ◽  
T. J. Whitney

Composite structures in an aircraft are susceptible to impact damage, which can occur during manufacture, service or maintenance. Recent studies show that impacts with ground support equipment are the major cause of in-service damage to composite structures in an aircraft. Other sources of impact include collision with birds, runway stones or ballistic impacts. These impacts can produce various types of damage, including fiber breakage, matrix cracking, delamination, and interfacial debonding. The results of such damage can have detrimental effects on the overall structural performance and safety. A comprehensive structural health monitoring (SHM) system provides a means to significantly reduce life-cycle costs of aerospace vehicles by providing accurate diagnostics and prognostics of structural damage to reduce unnecessary inspections and support vehicle life extension. The main objective of this paper is to develop a methodology to detect and identify the damage sources and their severity in composite laminates subjected to low velocity impact using wave propagation methods. When damage occurs in a material due to mechanical load or impact, an acoustic wave emits and propagates through the material. The material chosen for this work is a 12″ long and 12″ wide, +/− 60 degree braided composite. Two edges of the plate were fixed by clamping the plate between two steel bars and secured by bolts spaced 1″ apart, while the other two edges were free, as shown in Figure 1. In order to characterize the wave propagation and damage process, two resonant type AE sensors and four accelerometers were mounted on the specimen. The specimen was then tapped lightly with a hand-held acoustic impact hammer at several different chosen locations, and stress wave signals were monitored using a commercial dynamic signal process system which contains software capable of detecting impact source location. The impact force was kept to a minimum initially such that no damage occurred in the specimen. After this initial test, the specimens were subjected to low velocity impact using drop weight impact machine with 0.5 inch spherical indenter. The impact force was increased by a number of times until substantial damage observed while monitoring signals generated from the specimen. After each incremental impact, both acoustic hammer tapping test and nondestructive inspection such as ultrasonic C-scan and/or X-ray radiography were carried out to delineate the damage source and severity. Figure 2 is an example of C-Scan of the composite plate after a series of impacts with various drop heights. Recorded signals were analyzed to determine the origin of the source and its severity. The impact hammer produced both an extensional wave and a flexural wave in these composite plate specimens. Because of dispersive characteristics of the flexural wave, the first arrival time of the extensional wave was used for source location algorithm. Besides the source location, discussion will be given on parameters such as amplitude, energy, frequency, number of events related with impact force, and damage size in detail. As an example, Figure 3 is a plot of the measured damage size as a function of the dead-weight drop height for tests conducted on various panels. As expected, the size of the damage increases with amount of drop height (or impact energy). Thus, based on C-scan measurements, critical threshold impact height of approximately 5″ is identified for “any measurable” damage to occur. The corresponding magnitude of the impact energy is ∼ 108 in-lb. On the other hand, the critical threshold for any visual damage to be detected is approximately 502 in-lb for the laminate material investigated. In summary, a methodology has been developed for estimating the damage severity from the amplitude of the signal received. The approach entails constructing design curves relating the size of the damage to impact energy, and establishing relationships between impact energy and the magnitude of the signal. These relationships can then be used to predict the estimated size of the damage based on the amplitude of the arriving signal. A critical threshold impact energy has been identified below which “no measurable” damage occurs. Three regions of damage growth, namely, a decreasing rate with magnitude of impact energy. A constant damage growth rate characterizes the steady-state region, while damage size increases almost exponentially with impact energy in the tertiary region potentially leading to catastrophic failure.


2015 ◽  
Vol 801 ◽  
pp. 25-32
Author(s):  
Ozdes Cermik ◽  
Hamid Ghaednia ◽  
Dan B. Marghitu

In the current study a flattening contact model, combined with a permanent deformation expression, has been analyzed for the oblique impact case. The model has been simulated for different initial conditions using MATLAB. The initial impact velocity used for the simulations ranges from 0.5 to 3 m/s. The results are compared theoretically for four different impact angles including 20, 45, 70, and 90 degrees. The contact force, the linear and the angular motion, the permanent deformation, and the coefficient of restitution have been analyzed. It is assumed that sliding occurs throughout the impact.


Author(s):  
Burak Demirel ◽  
Mu¨min Tolga Emirler ◽  
Ahmet Yo¨ru¨kog˘lu ◽  
Nebahat Koca ◽  
U¨mit So¨nmez

A novel design of compliant slider crank mechanism is introduced and utilized as an impact force generator and contact force generator. This class of compliant slider mechanisms incorporates an elastic coupler which is an initially straight flexible beam and buckles when it hits the stopper. The elastic pin-pin coupler (a buckling beam) behaves as a rigid body prior to the impact pushing the rigid slider. At a certain crank angle the slider hits a stopper generating an impact force. Impact force can be changed by changing the angular velocity of the crank, therefore; achieving a desired velocity of the slider. Moreover, after the impact when the vibrations die out the maximum contact force can also be predetermined by designing the coupler dimensions (length, width, thickness and the amount of compression). Contact duration (crank angle) can also be changed and adjusted in this mechanism by changing the adjustable location of the impacted object.


Author(s):  
Mohammad Poursina ◽  
Parviz E. Nikravesh

Abstract This article presents an analytical formula to characterize the damping coefficient in a continuous force model of the direct central impact. The contact force element consists of a linear damper which is in a parallel connection to a spring with Hertz force-deformation characteristic. Unlike the existing models in which the separation condition is assumed to be at the time at which both zero penetration (deformation) and zero force occur, in this study, zero contact force is considered as the separation condition. To ensure that the continuous contact model obtains the desired restitution, an optimization process is performed to find the damping coefficient. The numerical investigations show that the damping coefficient can be analytically expressed as a function of system’s parameters such as the effective mass, penetration speed just before the impact, Hertz spring constant, and the coefficient of restitution.


2014 ◽  
Vol 14 (20) ◽  
pp. 11525-11544 ◽  
Author(s):  
W. Woiwode ◽  
J.-U. Grooß ◽  
H. Oelhaf ◽  
S. Molleker ◽  
S. Borrmann ◽  
...  

Abstract. Vertical redistribution of HNO3 through large HNO3-containing particles associated with polar stratospheric clouds (PSCs) plays an important role in the chemistry of the Arctic winter stratosphere. During the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions) campaign, apparently very large NAT (nitric acid trihydrate) particles were observed by the airborne in situ probe FSSP-100 (Molleker et al., 2014). Our analysis shows that the FSSP-100 observations associated with the flight on 25 January 2010 cannot easily be explained assuming compact spherical NAT particles due to much too short growing time at temperatures below the existence temperature of NAT (TNAT). State-of-the-art simulations using CLaMS (Chemical Lagrangian Model of the Stratosphere; Grooß et al., 2014) suggest considerably smaller particles. We consider the hypothesis that the simulation reproduces the NAT particle masses in a realistic way, but that real NAT particles may have larger apparent sizes compared to compact spherical particles, e.g. due to non-compact morphology or aspheric shape. Our study focuses on the consequence that such particles would have reduced settling velocities compared to compact spheres, altering the vertical redistribution of HNO3. Utilising CLaMS simulations, we investigate the impact of reduced settling velocities of NAT particles on vertical HNO3 redistribution and compare the results with observations of gas-phase HNO3 by the airborne Fourier transform spectrometer MIPAS-STR associated with two RECONCILE flights. The MIPAS-STR observations confirm conditions consistent with denitrification by NAT particles for the flight on 25 January 2010 and show good agreement with the simulations within the limitations of the comparison. Best agreement is found if settling velocities between 100 and 50% relative to compact spherical particles are considered (slight preference for the 70% scenario). In contrast, relative settling velocities of 30% result in too weak vertical HNO3 redistribution. Sensitivity simulations considering temperature biases of ±1 K and multiplying the simulated nucleation rates by factors of 0.5 and 2.0 affect the comparisons to a similar extent, but result in no effective improvement compared to the reference scenario. Our results show that an accurate knowledge of the settling velocities of NAT particles is important for quantitative simulations of vertical HNO3 redistribution.


2009 ◽  
Vol 17 (04) ◽  
pp. 357-364
Author(s):  
B. EDWARD MCDONALD

Attenuation which is linear in frequency (as opposed to quadratic as for laminar viscosity) occurs in porous media wave propagation and biomedical applications. Straightforward use of Fourier transforms for frequency-linear attenuation violates causality. We give a causal time domain algorithm with numerical stability criteria and verify its accuracy. For acoustic wave propagation in ocean sediment, the algorithm results in a mild increase of phase speed with frequency as a result of the Kramers–Kronig relation. The algorithm gives results in good agreement with in situ data for sandy sediment.


2007 ◽  
Vol 347 ◽  
pp. 665-670 ◽  
Author(s):  
Nicolae Constantin ◽  
Mircea Găvan ◽  
Marin Sandu ◽  
Ştefan Sorohan ◽  
Viorel Anghel

Low velocity impact is a frequent and inevitable in-service event, with higher occurrence in transportation structures. The damages following such an event are more diverse, extended and with more severe consequences in the case of composite materials and structures. The research work presented here concerns fibre reinforced polymeric composites in the forms of plates and pipes. It is continuing an effort meant to allow customers exploiting such structures to have a short cut in monitoring the integrity of this kind of structures. To this end, it is proposed a careful following of the impact force history recording, which can offer valuable and more direct information about the damage level produced under this insidious loading.


Author(s):  
Siu Vay Lo ◽  
Nha Thanh Nguyen ◽  
Minh Ngoc Nguyen ◽  
Truong Tich Thien

In the MPM algorithm, all the particles are formulated in a single-valued velocity field hence the non-slip contact can be satisfied without any contact treatment. However, in some impact and penetration problems, the non-slip contact condition is not appropriate and may even yield unreasonable results, so it is important to overcome this drawback by using a contact algorithm in the MPM. In this paper, the variation of contact force with respect to time caused by the impact is investigated. The MPM using the Lagrange basis function, so causing the cell-crossing phenomenon when a particle moves from one cell to another. The essence of this phenomenon is due to the discontinuity of the gradient of the linear basis function. The accuracy of the results is therefore also affected. The high order B-spline MPM is used in this study to overcome the cell-crossing error. The BSMPM uses higher-order B-spline functions to make sure the derivatives of the shape functions are continuous, so that alleviate the error. The algorithm of MPM and BSMPM has some differences in defining the computational grid. Hence, the original contact algorithm in MPM needs to be modified to be suitable in order to use in the BSMPM. The purpose of this study is to construct a suitable contact algorithm for BSMPM and then use it to investigate the contact force caused by impact. Some numerical examples are presented in this paper, the impact of two circular elastic disks and the impact of a soft circular disk into a stiffer rectangular block. All the results of contact force obtained from this study are compared with finite element results and perform a good agreement, the energy conservation is also considered.


2019 ◽  
Vol 812 ◽  
pp. 17-24
Author(s):  
Mario Emanuele de Simone ◽  
Francesco Ciampa ◽  
Michele Meo

This research work presents a hierarchical method able to reconstruct the time history of the impact force on a composite wing stringer-skin panel by using the structural responses measured by a set of surface bonded ultrasonic transducers. Time reversal method was used to identify the impact location by the knowledge of structural responses recorded from a set of excitation points arbitrarily chosen on the plane of the structure. Radial basis function interpolation approach was then used to calculate the transfer function at the impact point and reconstruct the impact force history. Experimental results showed the high level of accuracy of the proposed impact force reconstruction method for a number of low-velocity impact sources and energies.


2014 ◽  
Vol 624 ◽  
pp. 267-271
Author(s):  
Zhu Hua Tan ◽  
Bo Zhang ◽  
Peng Cheng Zhai

The dynamic response of the square tube subjected to the impact of a mass was investigated by using experimental and numerical methods. The square tube was impacted by a mass at the velocity ranging from 5.09 m/s to 12.78 m/s, and different progressive buckling modes were obtained. The numerical simulation was also carried out to analyze the buckling mechanism of the square tube. The results show that there is obvious stress wave propagation and strain localization in the tube, which has a significant influence on the buckling mechanism of the tube. The stress wave and inertia of the mass play different roles at various impact velocities. And buckling mechanism at low velocity is mainly caused by stress wave, whereas the buckling mechanism at high velocity is resulted from the inertial of the mass.


Sign in / Sign up

Export Citation Format

Share Document