scholarly journals Non-Hermiticity-induced reentrant localization in a quasiperiodic lattice

Author(s):  
Chaohua Wu ◽  
Fan Jingtao ◽  
Gang Chen ◽  
Suotang Jia

Abstract In this paper, we demonstrate that the non-Hermiticity can induce reentrant localization in a generalized quasiperiodic lattice. Specifically, by considering a nonreciprocal dimerized lattice with staggered quasiperiodic disorder, we find that the localization transition can appear twice by increasing the disorder strength. We also unravel a multi-complex-real eigenenergy transition, whose transition points coincide with those in the localization phase transitions. Moreover, the impacts of boundary conditions on the localization properties have been clarified. Finally, we study the wavepacket dynamics in different parameter regimes, which offers an experimentally feasible route to detect the reentrant localization.

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ilka Brunner ◽  
Fabian Klos ◽  
Daniel Roggenkamp

Abstract In this paper, we construct defects (domain walls) that connect different phases of two-dimensional gauged linear sigma models (GLSMs), as well as defects that embed those phases into the GLSMs. Via their action on boundary conditions these defects give rise to functors between the D-brane categories, which respectively describe the transport of D-branes between different phases, and embed the D-brane categories of the phases into the category of D-branes of the GLSMs.


2009 ◽  
Vol 19 (06) ◽  
pp. 969-991 ◽  
Author(s):  
GIULIO SCHIMPERNA

The Penrose–Fife system for phase transitions is addressed. Dirichlet boundary conditions for the temperature are assumed. Existence of global and exponential attractors is proved. Differently from preceding contributions, here the energy balance equation is both singular at 0 and degenerate at ∞. For this reason, the dissipativity of the associated dynamical process is not trivial and has to be proved rather carefully.


2004 ◽  
Vol 15 (08) ◽  
pp. 1095-1103 ◽  
Author(s):  
RECEP ERYIĞIT ◽  
RESUL ERYIĞIT ◽  
YIĞIT GÜNDÜÇ

We study ground state pairwise entanglement within one-dimensional spin-1/2 antiferromagnetic J1–J2 model with competing interactions. Contrary to some claims we found that frustration does not increase entanglement. Concurrence of nearest and next nearest neighbors are found to show abrupt change at phase transition points. We also show that the concurrence can be used to classify the phase diagram of the model in anisotropy–frustration plane.


2008 ◽  
Vol 21 (7) ◽  
pp. 971-979 ◽  
Author(s):  
Jacques Demongeot ◽  
Christelle Jézéquel ◽  
Sylvain Sené

2018 ◽  
Vol 185 ◽  
pp. 11002
Author(s):  
Felix Kassan-Ogly ◽  
Alexey Proshkin

We studied magnetic orderings, phase transitions, and frustrations in the Ising, 3-state Potts and standard 4-state Potts models on 1D, 2D, and 3D lattices: linear chain, square, triangular, kagome, honeycomb, and body-centered cubic. The main challenge was to find out the causes of frustrations phenomena and those features that distinguish frustrated system from not frustrated ones. The spins may interrelate with one another via the nearest-neighbor, the next-nearest-neighbor or higher-neighbor exchange interactions and via an external magnetic field that may be either competing or not. For problem solving we mainly calculated the entropy and specific heat using the rigorous analytical solutions for Kramers-Wannier transfer-matrix and exploiting computer simulation, par excellence, by Wang-Landau algorithm. Whether a system is ordered or frustrated is depend on the signs and values of exchange interactions. An external magnetic field may both favor the ordering of a system and create frustrations. With the help of calculations of the entropy, the specific heat and magnetic parameters, we obtained the points and ranges of frustrations, the frustration fields and the phase transition points. The results obtained also show that the same exchange interactions my either be competing or noncompeting which depends on the specific model and the lattice topology.


2017 ◽  
Vol 07 (01) ◽  
pp. 1750004 ◽  
Author(s):  
O. G. Maksimova ◽  
A. V. Maksimov ◽  
O. S. Baruzdina

The influence of free surface and depolarizing field on structural phase transitions in thin ferroelectric films from an ordered state to a disordered one is investigated. The dependences of the order parameter on the distance from the free film surface are calculated. It is shown that with the presence of the depolarizing field and in its absence, the effective thickness of the surface layer depends on the temperature. Nearby the phase transition point, the thickness increases indefinitely. Calculations considering depolarizing field showed that the phase transition points for the bulk ferroelectrics and the film under given boundary conditions coincide. Also shown that in the absence of depolarizing field with mixed boundary conditions, the film thickness does not affect the order parameter, and in presence of the field, this influence is observed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Birendra Kumar ◽  
Jeetendra Kumar Tiwari ◽  
Harish Chandr Chauhan ◽  
Subhasis Ghosh

AbstractHere, we report three magnetic transitions at 101 K (T$$_{C1}$$ C 1 ), 246 K (T$$_{C2}$$ C 2 ) and 295 K (T$$_{C3}$$ C 3 ) in bilayer La$$_{1.4}$$ 1.4 Sr$$_{1.6}$$ 1.6 Mn$$_{2}$$ 2 O$$_7$$ 7 . The second order phase transitions have been identified at these transition points with the help of change in entropy analysis and modified Arrott plots (MAPs). The critical behavior around T$$_{C1}$$ C 1 , T$$_{C2}$$ C 2 and T$$_{C3}$$ C 3 have been studied by MAPs and Kouvel–Fisher method. Based on these analyses four magnetic phases are: (1) 2D Ising ferromagnetic (FM) below T$$_{C1}$$ C 1 ,(2) 2D Heisenberg canted antiferromagnetic (CAFM-I) and FM clusters in temperature range T$$_{C1}$$ C 1 < T < T$$_{C2}$$ C 2 , (3) 2D Heisenberg CAFM-II and FM clusters with non magnetically interacting planes in temperature range T$$_{C2}$$ C 2 < T < T$$_{C3}$$ C 3 and (4) paramagnetic for T > T$$_{C3}$$ C 3 .


2021 ◽  
Vol 10 (5) ◽  
Author(s):  
Ángel L. Corps ◽  
Rafael Molina ◽  
Armando Relaño

Disordered interacting spin chains that undergo a many-body localization transition are characterized by two limiting behaviors where the dynamics are chaotic and integrable. However, the transition region between them is not fully understood yet. We propose here a possible finite-size precursor of a critical point that shows a typical finite-size scaling and distinguishes between two different dynamical phases. The kurtosis excess of the diagonal fluctuations of the full one-dimensional momentum distribution from its microcanonical average is maximum at this singular point in the paradigmatic disordered J_1J1-J_2J2 model. For system sizes accessible to exact diagonalization, both the position and the size of this maximum scale linearly with the system size. Furthermore, we show that this singular point is found at the same disorder strength at which the Thouless and the Heisenberg energies coincide. Below this point, the spectral statistics follow the universal random matrix behavior up to the Thouless energy. Above it, no traces of chaotic behavior remain, and the spectral statistics are well described by a generalized semi-Poissonian model, eventually leading to the integrable Poissonian behavior. We provide, thus, an integrated scenario for the many-body localization transition, conjecturing that the critical point in the thermodynamic limit, if it exists, should be given by this value of disorder strength.


Sign in / Sign up

Export Citation Format

Share Document