Development of a Novel DEMO Divertor Target: Spiral Plate Module

2021 ◽  
Author(s):  
N R Schwartz ◽  
J R Nicholas ◽  
Z J Jackson ◽  
P T Ireland
Keyword(s):  
Author(s):  
Louis C. Burmeister

A formula is derived for the dependence of heat exchanger effectiveness on the number of transfer units for a spiral-plate heat exchanger with equal capacitance rates. The difference-differential equations that describe the temperature distributions of the two counter-flowing fluids, neglecting thermal radiation, are solved symbolically to close approximation. Provision is made for offset inlet and exit of the hot and cold fluids at the outer periphery and for large heat transfer coefficients in entrance regions. The peak effectiveness and the number of transfer units at which it occurs are predicted.


2018 ◽  
Vol 13 (3) ◽  
pp. 72-76
Author(s):  
Гумар Булгариев ◽  
Gumar Bulgariev ◽  
Геннадий Пикмуллин ◽  
Gennadiy Pikmullin ◽  
Ильгиз Галиев ◽  
...  

At the present stage of development of the country’s agro-industrial complex, the technological process of surface tillage by combined soil-cultivating machines, simultaneously combining a number of operations in one pass through the field, causes the presence in their designs of the necessary set of various promising working organs. In view of the foregoing, a rotary soil ripper with a spiral-plate working member equipped with radially directed teeth and connected by means of rods with end flanges has been developed. Also, the researched ripper has the limits of penetration of the working element in the form of flat discs equipped with flanges and the radial stop have the ability to rotate around their axes independently of the ripper shaft. An analytical study of the working units of this ripper was carried out from the point of view of the influence of their size and teeth on the process of interaction with the soil, on the basis of which some of their parameters were determined. In conclusion, it was concluded that the analytical equations obtained allow us to justify the choice of the most important design parameters of the proposed new design and design a toothed rotary working device that reduces to constructive implementation after calculating their basic dimensions.


Author(s):  
Xueyou Wen ◽  
Jiguo Zou ◽  
Zheng Fu ◽  
Shikang Yu ◽  
Lingbo Li

Steam-injected gas turbines have a multitude of advantages, but they suffer from the inability to recover precious demineralized water. The present paper describes the test conditions and results of steam injection along with an attempt to achieve water recovery, which were obtained through a series of tests conducted on a S1A-02 small-sized industrial gas turbine. A water recovery device incorporating a compact finned spiral plate cooling condenser equipped with filter screens has been designed for the said gas turbine and a 100% water recovery (based on the design point) was attained.


2019 ◽  
Vol 48 (7) ◽  
pp. 3128-3143 ◽  
Author(s):  
Madhuri Charulatha Returi ◽  
Ramakrishna Konijeti ◽  
Abhishek Dasore

2014 ◽  
Vol 960-961 ◽  
pp. 410-413
Author(s):  
Zhong Zheng Xiao ◽  
Shu Zhong Wang ◽  
Jian Ping Yang

In order to enhance the economy of steam assisted gravity drainage (SAGD) technology, researches were conducted on the technology for recovering heat from liquid produced from oil wells. In this study, spiral-plate heat exchanger has been chosen after comparison and analysis, which is used to recover the heat from the produced liquid and raise the temperature of the softened water used in steam injection boilers. The procedures are liquid produced from the wellhead enters a metering and transfer station for degasification and then enters a centralized heat exchanger station where its temperature is reduced to 100°C from 170°C and the temperature of softened water used as boiler feed water is increased to 110°C from 70°C. The result shows that the fuel gas consumption will drop by 907200Nm3 for each boiler annually when the liquid heat recovery technology is adopted.


1999 ◽  
Vol 121 (1) ◽  
pp. 14-19 ◽  
Author(s):  
R. Z. Wang ◽  
J. Y. Wu ◽  
Y. X. Xu

Spiral plate heat exchangers as adsorbers have been proposed, and a prototype heat regenerative adsorption refrigerator using activated carbon-methanol pair has been developed and tested. Various improvements have been made, at last we get a specific cooling power for 2.6 kg-ice/day-kg adsorbent at the condition of generation temperature lower than 100°C. Discussions on the arrangements of thermal cycles and influences of design are shown.


2014 ◽  
Vol 18 (4) ◽  
pp. 1355-1360 ◽  
Author(s):  
Rajavel Rangasamy

An experimental and numerical study of heat transfer and flow characteristics of spiral plate heat exchanger was carried out. The effects of geometrical aspects of the spiral plate heat exchanger and fluid properties on the heat transfer characteristics were also studied. Three spiral plate heat exchangers with different plate spacing (4mm, 5mm and 6 mm) were designed, fabricated and tested. Physical models have been experimented for different process fluids and flow conditions. Water is taken as test fluid. The effect of mass flow rate and Reynolds number on heat transfer coefficient has been studied. Correlation has been developed to predict Nusselt numbers. Numerical models have been simulated using CFD software package FLUENT 6.3.26. The numerical Nusselt number have been calculated and compared with that of experimental Nusselt number.


Sign in / Sign up

Export Citation Format

Share Document