Research on Recovering Waste Heat from Liquid Produced in Heavy Oil Exploitation by SAGD Technology

2014 ◽  
Vol 960-961 ◽  
pp. 410-413
Author(s):  
Zhong Zheng Xiao ◽  
Shu Zhong Wang ◽  
Jian Ping Yang

In order to enhance the economy of steam assisted gravity drainage (SAGD) technology, researches were conducted on the technology for recovering heat from liquid produced from oil wells. In this study, spiral-plate heat exchanger has been chosen after comparison and analysis, which is used to recover the heat from the produced liquid and raise the temperature of the softened water used in steam injection boilers. The procedures are liquid produced from the wellhead enters a metering and transfer station for degasification and then enters a centralized heat exchanger station where its temperature is reduced to 100°C from 170°C and the temperature of softened water used as boiler feed water is increased to 110°C from 70°C. The result shows that the fuel gas consumption will drop by 907200Nm3 for each boiler annually when the liquid heat recovery technology is adopted.

2018 ◽  
Vol 225 ◽  
pp. 05006 ◽  
Author(s):  
Shaymaa H. Abdulmalek ◽  
Hussain H. Al-Kayiem ◽  
Aklilu T. Baheta ◽  
Ali A. Gitan

Heat recovering from biogas waste energy requires robust heat exchanger design. This paper presents the design of fuel gas-air heat exchanger (FGAHE) for recovering waste heat from biogas burning to regenerate desiccant material. Mathematical model was built to design the FGAHE based on logarithmic mean temperature difference (LMTD) and staggered tube bank heat transfer correlations. MATLAB code was developed to solve the algorithm based on overall heat transfer coefficient iteration technique. The effect on tube diameter on design and thermal characteristics of FGAHE is investigated. The results revealed that the smaller tube diameter leads to smaller heat transfer area and tube. On the other hand, the overall heat transfer coefficient and Nusselt numbers have larger rates at smaller tube diameter. In conclusion, the nominated tube diameter for FGAHE is the smaller diameter of 0.0127 m due to the high thermal performance.


Author(s):  
Dereje Shiferaw ◽  
Robert Broad

The purpose of this paper is to show how compact heat exchanger technology can offer energy savings and hence cycle efficiency improvements on new and existing gas turbine installations by being utilised for fuel gas heating. After a brief introduction to high temperature compact heat exchanger technology and comparison to traditional equipment, thermodynamic cycle analysis for a combined cycle gas turbine plant (CCGT) is used show the advantages of compact technology over conventional technology, analysing the fuel gas heating, to illustrate the overall savings. A case study is used to demonstrate an increase in net LHV electric efficiency in the range of 0.5 to 1.17 % achievable using high effectiveness compact diffusion bonded heat exchangers in fuel gas heating. Intermediate pressure and high pressure feed water heating is considered for increasing the fuel gas inlet temperature to the combustor. The model is built in Excel and is extended to a capital expenditure overview based on new or a retrofitting in existing plants.


Author(s):  
Zheng Qun ◽  
Wang Gouxue ◽  
Sun Yufeng ◽  
Liu Shunlong

A ceiling-condensing heat exchanger made of glass tube, which can avoid corrosion caused by dissolved condensed acids, is installed after the Heat Recovery Steam Generator of S1A-02DFC gas turbine power plant in our laboratory. Sensible and latent heat of the injected steam are recovered. At the same time, water is recovered through condensing of the vapor contained within the exhaust. The recovered heat can be used for preheating of feed water, so better the performances of DFC gas turbine power plant. Chemical analyses of the condensed water indicates that it is softer than most water sources, contains only a small amount of combustion products, after simply treating, it can be reused for steam injection. In addition, sulphur and nitrogen oxides in the exhaust gas condensed and dissolved into the condensed water, so the emission of these substances is reduced further, which means that it is more favorable for environment. Some theoretical analyses of the heat exchanger and experimental results are represented.


Author(s):  
Katie T. Sell ◽  
Paul R. Langston ◽  
Rene´ H. Mitchell

Compressor station gas turbine engines require protection from fuel gas liquid drop-out caused by the Joule-Thomson effect when natural gas is let down from transportation line pressure to the burner supply pressure. Indeed, gas turbine manufacturers specify a minimum gas superheat, which requires fuel gas heating at pipeline temperatures experienced in Northern Europe. Conventionally, fuel gas superheating is achieved through the use of either electric or gas fired water bath heaters, which require maintenance, and an external heat source. Meanwhile, waste heat from the turbo-compressor lube oil system is released to atmosphere, typically by air-cooled heat exchangers. Hence, there is an obvious opportunity to protect the gas turbine engine, whilst reducing the amount of heat rejected to the environment. Mechanical integrity is a key operational requirement when combining fuel gas superheating with lube oil cooling in a single heat exchanger. Fuel gas at high pressure must not enter the low pressure lube oil system. High integrity Printed Circuit Heat Exchangers (PCHEs) are ideally suited to this application, as they are diffusion bonded and fully welded heat exchangers. Used extensively in offshore high pressure gas compression trains in the North Sea, PCHEs have demonstrated that they are low maintenance items that are ideal for use in remote unmanned applications, such as those required by gas compression stations. PCHEs are highly compact, reducing space and structural requirements. This allows the exchanger to be installed underneath the compressor, minimizing the visual impact of the heat exchanger. In addition, safety and pressure relief requirements are significantly reduced, a PCHEs do not have a failure mode analogous to tube rupture in shell and tube heat exchangers. National Grid Transco have realized the opportunities of PCHEs and operated them successfully over many years in many of their compression stations throughout the United Kingdom.


2019 ◽  
Author(s):  
Sakil Hossen ◽  
AKM M. Morshed ◽  
Amitav Tikadar ◽  
Azzam S. Salman ◽  
Titan C. Paul

2007 ◽  
Vol 2 (3) ◽  
pp. 86-95
Author(s):  
R. Sudhakaran ◽  
◽  
V. Sella Durai ◽  
T. Kannan ◽  
P.S. Sivasakthievel ◽  
...  

2017 ◽  
Vol 16 (5) ◽  
pp. 1107-1113 ◽  
Author(s):  
Andrei Burlacu ◽  
Constantin Doru Lazarescu ◽  
Adrian Alexandru Serbanoiu ◽  
Marinela Barbuta ◽  
Vasilica Ciocan ◽  
...  

Alloy Digest ◽  
1959 ◽  
Vol 8 (9) ◽  

Abstract Revere No. 508 is a highly ductile, malleable and corrosion resistant copper-nickel alloy suitable for condenser and heat exchanger tubes and many engineering applications such as salt water piping aboard ship, many components of salt water and fresh water stills, feed water heater tubes and marine coolers. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-81. Producer or source: Revere Copper and Brass Inc..


Alloy Digest ◽  
1969 ◽  
Vol 18 (6) ◽  

Abstract Cupro Nickel, 30%-716 is a high strength copper-nickel-iron alloy for heat exchanger tubes in power plant feed water heaters, and also for oil refinery service. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, joining, and surface treatment. Filing Code: Cu-200. Producer or source: Anaconda American Brass Company.


Sign in / Sign up

Export Citation Format

Share Document