scholarly journals On the constraint structure of vacuum energy sequestering

2019 ◽  
Vol 2019 (12) ◽  
pp. 033-033
Author(s):  
Andrew Svesko ◽  
George Zahariade
2007 ◽  
Vol 2007 (12) ◽  
pp. 048-048 ◽  
Author(s):  
So Matsuura
Keyword(s):  

Author(s):  
Zachary H. Pugh ◽  
Douglas J. Gillan

A diagramming method called Propositional Constraint (PC) graphing was developed as an aid for tasks involving argumentation, planning, and design. Motivated by several AI models of defeasible (or non- monotonic) reasoning, PC graphs were designed to represent knowledge according to an analogical framework in which constraints (e.g., evidence, goals, system constraints) may elicit or deny possibilities (e.g., explanations, decisions, behaviors). In cases of underspecification, an absence of constraints yields uncertainty and competition among plausible outcomes. In cases of overspecification, no plausible outcome is yielded until one of the constraints is amended or forfeited. This framework shares features with theoretical models of reasoning and argumentation, but despite its intuitiveness and applicability, we know of no modeling language or graphical aid that explicitly depicts this defeasible constraint structure. We describe the syntax and semantics for PC graphing and then illustrate potential uses for it.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 650
Author(s):  
Ruide Yun ◽  
Yangsheng Zhu ◽  
Zhiwei Liu ◽  
Jianmei Huang ◽  
Xiaojun Yan ◽  
...  

We report a novel electrostatic self-excited resonator driven by DC voltage that achieves variable velocity-position characteristics via applying the pre-tension/pre-compression constraint. The resonator consists of a simply supported micro-beam, two plate electrodes, and two adjustable constraint bases, and it can be under pre-compression or pre-tension constraint by adjusting the distance L between two constraint bases (when beam length l > L, the resonator is under pre-compression and when l < L, it is under pre-tension). The oscillating velocity of the beam reaches the maximum value in the position around electrodes under the pre-compression constraint and reaches the maximum value in the middle position between two electrodes under the pre-tension condition. By changing the constraint of the microbeam, the position of the maximum velocity output of the oscillating beam can be controlled. The electrostatic self-excited resonator with a simple constraint structure under DC voltage has great potential in the field of propulsion of micro-robots, such as active rotation control of flapping wings.


2021 ◽  
Vol 103 (8) ◽  
Author(s):  
Enrique Alvarez ◽  
Jesus Anero ◽  
Raquel Santos-Garcia
Keyword(s):  

2019 ◽  
Vol 28 (14) ◽  
pp. 1944006
Author(s):  
ChunJun Cao ◽  
Aidan Chatwin-Davies ◽  
Ashmeet Singh

According to the holographic bound, there is only a finite density of degrees of freedom in space when gravity is taken into account. Conventional quantum field theory does not conform to this bound, since in this framework, infinitely many degrees of freedom may be localized to any given region of space. In this paper, we explore the viewpoint that quantum field theory may emerge from an underlying theory that is locally finite-dimensional, and we construct a locally finite-dimensional version of a Klein–Gordon scalar field using generalized Clifford algebras. Demanding that the finite-dimensional field operators obey a suitable version of the canonical commutation relations makes this construction essentially unique. We then find that enforcing local finite dimensionality in a holographically consistent way leads to a huge suppression of the quantum contribution to vacuum energy, to the point that the theoretical prediction becomes plausibly consistent with observations.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
J. M. Muñoz-Castañeda ◽  
L. Santamaría-Sanz ◽  
M. Donaire ◽  
M. Tello-Fraile

Abstract In this paper we study the system of a scalar quantum field confined between two plane, isotropic, and homogeneous parallel plates at thermal equilibrium. We represent the plates by the most general lossless and frequency-independent boundary conditions that satisfy the conditions of isotropy and homogeneity and are compatible with the unitarity of the quantum field theory. Under these conditions we compute the thermal correction to the quantum vacuum energy as a function of the temperature and the parameters encoding the boundary condition. The latter enables us to obtain similar results for the pressure between plates and the quantum thermal correction to the entropy. We find out that our system is thermodynamically stable for any boundary conditions, and we identify a critical temperature below which certain boundary conditions yield attractive, repulsive, and null Casimir forces.


2011 ◽  
Vol 415-417 ◽  
pp. 523-526
Author(s):  
Yan Dong ◽  
Mei Li

This paper put forward a geometry feature recognition method of part drawing based on graph matching. Describe the constraints structure of geometric feature in geometric elements and those constraint relationships. Match sub-graph in contour closure graphics and those combination. Using linear symbol notation of chemical compounds in chemical database for reference, encode to constraint structure of geometry graphics, establish recognition mechanism of geometric characteristics by structure codes. Taking the fine-tune screw and fork parts for example, this method has been proved to be effective.


2009 ◽  
Vol 18 (14) ◽  
pp. 2265-2268 ◽  
Author(s):  
VIQAR HUSAIN

We describe a link between the cosmological constant problem and the problem of time in quantum gravity. This arises from examining the relationship between the cosmological constant and vacuum energy in light of nonperturbative formulations of quantum gravity.


2003 ◽  
Vol 18 (10) ◽  
pp. 683-690 ◽  
Author(s):  
GIOVANNI MODANESE

We evaluate the local contribution gμνL of coherent matter with Lagrangian density L to the vacuum energy density. Focusing on the case of superconductors obeying the Ginzburg–Landau equation, we express the relativistic invariant density L in terms of low-energy quantities containing the pairs density. We discuss under which physical conditions the sign of the local contribution of the collective wave function to the vacuum energy density is positive or negative. Effects of this kind can play an important role in bringing the local changes in the amplitude of gravitational vacuum fluctuations — a phenomenon reminiscent of the Casimir effect in QED.


2012 ◽  
Vol 27 (25) ◽  
pp. 1250150 ◽  
Author(s):  
F. R. KLINKHAMER

A simplified (but consistent) description of particle-production back-reaction effects in de Sitter spacetime is given.


Sign in / Sign up

Export Citation Format

Share Document