Theoretical analysis of RNA polymerase fidelity: a steady-state copolymerization approach

Author(s):  
Wenbo Fu ◽  
Qiushi Li ◽  
Yongshun Song ◽  
Yaogen Shu ◽  
Zhongcan Ouyang ◽  
...  

Abstract The fidelity of DNA transcription catalyzed by RNA polymerase (RNAP) has long been an important issue in biology. Experiments have revealed that RNAP can incorporate matched nucleotides selectively and proofread the incorporated mismatched nucleotides. However, systematic theoretical researches on RNAP fidelity are still lacking. In the last decade, several theories on RNA transcription have been proposed, but they only handled highly simplified models without considering the high-order neighbor effects and the oligonucleotides cleavage both of which are critical for the overall fidelity. In this paper, we regard RNA transcription as a binary copolymerization process and calculate the transcription fidelity by the steady-state copolymerization theory recently proposed by us for DNA replication. With this theory, the more realistic models considering higher-order neighbor effects, oligonucleotides cleavage, multi-step incorporation and multi-step cleavage can be rigorously handled.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Muchen Pan ◽  
Ana L. Alvarez-Cabrera ◽  
Joon S. Kang ◽  
Lihua Wang ◽  
Chunhai Fan ◽  
...  

AbstractMammalian reovirus (MRV) is the prototypical member of genus Orthoreovirus of family Reoviridae. However, lacking high-resolution structures of its RNA polymerase cofactor μ2 and infectious particle, limits understanding of molecular interactions among proteins and RNA, and their contributions to virion assembly and RNA transcription. Here, we report the 3.3 Å-resolution asymmetric reconstruction of transcribing MRV and in situ atomic models of its capsid proteins, the asymmetrically attached RNA-dependent RNA polymerase (RdRp) λ3, and RdRp-bound nucleoside triphosphatase μ2 with a unique RNA-binding domain. We reveal molecular interactions among virion proteins and genomic and messenger RNA. Polymerase complexes in three Spinoreovirinae subfamily members are organized with different pseudo-D3d symmetries to engage their highly diversified genomes. The above interactions and those between symmetry-mismatched receptor-binding σ1 trimers and RNA-capping λ2 pentamers balance competing needs of capsid assembly, external protein removal, and allosteric triggering of endogenous RNA transcription, before, during and after infection, respectively.


Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 737-747 ◽  
Author(s):  
Jacques Archambault ◽  
David B Jansma ◽  
James D Friesen

Abstract In the yeast Saccharomyces cerevisiae, mutations in genes encoding subunits of RNA polymerase II (RNAPII) often give rise to a set of pleiotropic phenotypes that includes temperature sensitivity, slow growth and inositol auxotrophy. In this study, we show that these phenotypes can be brought about by a reduction in the intracellular concentration of RNAPII. Underproduction of RNAPII was achieved by expressing the gene (RPO21), encoding the largest subunit of the enzyme, from the LEU2 promoter or a weaker derivative of it, two promoters that can be repressed by the addition of leucine to the growth medium. We found that cells that underproduced RPO21 were unable to derepress fully the expression of a reporter gene under the control of the INO1 UAS. Our results indicate that temperature sensitivity, slow growth and inositol auxotrophy is a set of phenotypes that can be caused by lowering the steady-state amount of RNAPII; these results also lead to the prediction that some of the previously identified RNAPII mutations that confer this same set of phenotypes affect the assembly/stability of the enzyme. We propose a model to explain the hypersensitivity of INO1 transcription to mutations that affect components of the RNAPII transcriptional machinery.


Cell ◽  
1986 ◽  
Vol 47 (3) ◽  
pp. 445-450 ◽  
Author(s):  
Erik Bateman ◽  
Marvin R. Paule

1995 ◽  
Vol 108 (8) ◽  
pp. 2811-2823 ◽  
Author(s):  
M. Dundr ◽  
G.H. Leno ◽  
M.L. Hammarskjold ◽  
D. Rekosh ◽  
C. Helga-Maria ◽  
...  

The human immunodeficiency virus 1 (HIV-1) Rev transactivator protein plays a critical role in the regulation of expression of structural proteins by controlling the pathway of mRNA transport. The Rev protein is located predominantly in the nucleoli of HIV-1 infected or Rev-expressing cells. Previous studies demonstrated that the Rev protein forms a specific complex in vitro with protein B23 which is suggested to be a nucleolar receptor and/or carrier for the Rev protein. To study the role of the nucleolus and nucleolar proteins in Rev function, transfected COS-7 or transformed CMT3 cells expressing the Rev protein were examined for subcellular locations of Rev and other proteins using indirect immunofluorescence and immunoelectron microscopy. One day after transfection the Rev protein was found in most cells only in the nucleolar dense fibrillar and granular components where it colocalized with protein B23. These were designated class 1 cells. In a second class of cells Rev and B23 accumulated in the nucleoplasm as well as in nucleoli. Treatment of class 1 cells with actinomycin D (AMD) under conditions that blocked only RNA polymerase I transcription caused Rev to completely redistribute from nucleoli to the cytoplasm. Simultaneously, protein B23 was partially released from nucleoli, mostly into the nucleoplasm, with detectable amounts in the cytoplasm. In cells recovering from AMD treatment in the presence of cycloheximide Rev and B23 showed coincident relocation to nucleoli. Class 2 cells were resistant to AMD-induced Rev redistribution. Selective inhibition of RNA polymerase II transcription by alpha-amanitin or by DRB did not cause Rev to be released into the cytoplasm suggesting that active preribosomal RNA transcription is required for the nucleolar location of Rev. However, treatment with either of the latter two drugs at higher doses and for longer times caused partial disruption of nucleoli accompanied by translocation of the Rev protein to the cytoplasm. These results suggest that the nucleolar location of Rev depends on continuous preribosomal RNA transcription and a substantially intact nucleolar structure.


1984 ◽  
Vol 4 (10) ◽  
pp. 2031-2040
Author(s):  
M Mok ◽  
A Maderious ◽  
S Chen-Kiang

We have recently demonstrated pausing and premature termination of transcription by eucaryotic RNA polymerase II at specific sites in the major late transcriptional unit of adenovirus type 2 in vivo and in vitro. In further developing this as a system for studying eucaryotic termination control, we found that prematurely terminated transcripts of 175 and 120 nucleotides also occur in adenovirus type 5-infected cells. In both cases, premature termination occurs temporally, being found only during late times of infection, not at early times before DNA replication or immediately after the onset of DNA replication when late gene expression has begun (intermediate times). To examine the phenomenon of premature termination further, a temperature-sensitive mutant virus, adenovirus type 5 ts107, was used to uncouple DNA replication and transcription. DNA replication is defective in this mutant at restrictive temperatures. We found that premature termination is inducible at intermediate times by shifting from a permissive temperature to a restrictive temperature, allowing continuous transcription in the absence of continuous DNA replication. No premature termination occurs when the temperature is shifted up at early times before DNA replication. Our data suggest that premature termination of transcription is dependent on both prior synthesis of new templates and cumulative late gene transcription but does not require continuous DNA replication.


1991 ◽  
Vol 11 (11) ◽  
pp. 5398-5409
Author(s):  
J W Innis ◽  
R E Kellems

An elongation block to RNA polymerase II transcription in exon 1 is a major regulatory step in expression of the murine adenosine deaminase (ADA) gene. Previous work in the laboratory identified abundant short transcripts with 3' termini in exon 1 in steady-state RNA from injected oocytes. Using a cell-free system to investigate the mechanism of premature 3' end formation, we found that polymerase II generates prominent ADA transcripts approximately 96 to 100 nucleotides in length which are similar to the major short transcripts found in steady-state RNA from oocytes injected with ADA templates. We have determined that these transcripts are the processed products of 108- to 112-nucleotide precursors. Precursor formation is (i) favored in reactions using circular templates, (ii) not the result of a posttranscriptional processing event, (iii) sensitive to low concentrations of Sarkosyl, and (iv) dependent on a factor(s) which is inactivated in crude extracts at 47 degrees C for 15 min. The cell-free system will allow further characterization of the template and factor requirements involved in the control of premature 3' end formation by RNA polymerase II.


Sign in / Sign up

Export Citation Format

Share Document