Impact of Joule heating and multiple slips on a Maxwell nanofluid flow past a slendering surface

Author(s):  
Shafiq Ahmad ◽  
Muhammmad Naveed Khan ◽  
Sohail Nadeem ◽  
Aysha Rehman ◽  
Hijaz Ahmad ◽  
...  

Abstract This manuscript presents a study of three-dimensional MHD Maxwell nanofluid flow across a slendering stretched surface with Joule heating. The impact of binary chemical reactions, heat generation, thermal radiation, and thermophoretic effect is also taken into consideration. The multiple slip boundary conditions are utilized at the boundary of the surface. The appropriate similarity variable is used to transfer the flow modeled equations into ODEs, which are numerically solved by the utilization of the MATLAB bvp4c algorithm. The involved parameter's impact on the concentration, velocity, and temperature distribution are scrutinized with graphs. The transport rates (mass, heat) are also investigated using the same variables, with the results reported in tabulated form. It is seen that the fluid relaxation, magnetic, and wall thickness characteristics diminish the velocities of fluid. Further, the velocity, concentration, and temperature slip parameters reduce the velocities of fluid, temperature, and concentration distribution. The results are compared to existing studies and showed to be in dependable agreement.

2019 ◽  
Vol 24 (3) ◽  
pp. 709-724
Author(s):  
G. Vinod Kumar ◽  
S.V.K. Varma ◽  
R.V.M.S.S.K. Kumar

Abstract The stretching sheets with variable thickness may occur in engineering applications more frequently than a flat sheet. Due to its various applications, in the present analysis we considered a three dimensional unsteady MHD nanofluid flow over a stretching sheet with a variable wall thickness in a porous medium. The effects of radiation, viscous dissipation and slip boundary conditions are considered. Buongiorno’s model is incorporated to study the combined effects of thermophoresis and Brownian motion. The dimensionless governing equations are solved by using MATLAB bvp4c package. The impact of various important flow parameters is presented and analysed through graphs and tables. It is interesting to note that all the three boundary layer thicknesses are diminished by slip parameters. Further, the unsteady parameter decreases the hydromagnetic boundary layer thickness.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 453 ◽  
Author(s):  
Iskander Tlili ◽  
Sania Naseer ◽  
Muhammad Ramzan ◽  
Seifedine Kadry ◽  
Yunyoung Nam

This article elucidates the magnetohydrodynamic 3D Maxwell nanofluid flow with heat absorption/generation effects. The impact of the nonlinear thermal radiation with a chemical reaction is also an added feature of the presented model. The phenomenon of flow is supported by thermal and concentration stratified boundary conditions. The boundary layer set of non-linear PDEs (partial differential equation) are converted into ODEs (ordinary differential equation) with high nonlinearity via suitable transformations. The homotopy analysis technique is engaged to regulate the mathematical analysis. The obtained results for concentration, temperature and velocity profiles are analyzed graphically for various admissible parameters. A comparative statement with an already published article in limiting case is also added to corroborate our presented model. An excellent harmony in this regard is obtained. The impact of the Nusselt number for distinct parameters is also explored and discussed. It is found that the impacts of Brownian motion on the concentration and temperature distributions are opposite. It is also comprehended that the thermally stratified parameter decreases the fluid temperature.


Author(s):  
Amar B. Patil ◽  
Vishwambhar S. Patil ◽  
Pooja P. Humane ◽  
Nalini S. Patil ◽  
Govind R. Rajput

The present work deals with chemically reacting unsteady magnetohydrodynamic Maxwell nanofluid flow past an inclined permeable stretching surface embedded in a porous medium with thermal radiation. The formulated governing partial differential equations conveying the flow model of Maxwell with Buongiorno modeled nanofluid is transformed into the system of highly non-linear ordinary differential equations via suitable similarity transformations; those equations are transmuted into an initial value problem and then solved numerically by a shooting approach with Runge–-Kutta fourth-order schema. To obtain the physical insight of the flow situation, the influence of associated parameters on the velocity, temperature, and concentration profiles is sketched graphically with the aid of MATLAB software. Furthermore, engineering quantities of interest are interpreted graphically. The computed numerical results are compared to estimate the validity of the achieved results; it has been found out that the computed results are highly accurate. The impact of the Maxwell parameter and inclination angle of the sheet on the velocity field is observed in decaying. Both thermal and solutal energy transport are progressive in nature as the Maxwell parameter and thermophoresis parameter grows, and a reverse trend is observed for Prandtl number.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 849 ◽  
Author(s):  
Muhammad Ramzan ◽  
Asma Liaquet ◽  
Seifedine Kadry ◽  
Sungil Yu ◽  
Yunyoung Nam ◽  
...  

The present research examines the impact of second-order slip with thermal and solutal stratification coatings on three-dimensional (3D) Williamson nanofluid flow past a bidirectional stretched surface and envisages it analytically. The novelty of the analysis is strengthened by Cattaneo–Christov (CC) heat flux accompanying varying thermal conductivity. The appropriate set of transformations is implemented to get a differential equation system with high nonlinearity. The structure is addressed via the homotopy analysis technique. The authenticity of the presented model is verified by creating a comparison with the limited published results and finding harmony between the two. The impacts of miscellaneous arising parameters are deliberated through graphical structures. Some useful tabulated values of arising parameters versus physical quantities are also discussed here. It is observed that velocity components exhibit an opposite trend with respect to the stretching ratio parameter. Moreover, the Brownian motion parameter shows the opposite behavior versus temperature and concentration distributions.


2019 ◽  
Vol 9 (24) ◽  
pp. 5492 ◽  
Author(s):  
Muhammad Ramzan ◽  
Hina Gul ◽  
Seifedine Kadry ◽  
Chhayly Lim ◽  
Yunyoung Nam ◽  
...  

A novel mathematical model is envisioned discussing the magnetohydrodynamics (MHD) steady incompressible nanofluid flow with uniform free stream velocity over a thin needle in a permeable media. The flow analysis is performed in attendance of melting heat transfer with nonlinear chemical reaction. The novel model is examined at the surface with the slip boundary condition. The compatible transformations are affianced to attain the dimensionless equations system. Illustrations depicting the impact of distinct parameters versus all involved profiles are supported by requisite deliberations. It is perceived that the melting heat parameter has a declining effect on temperature profile while radial velocity enhances due to melting.


2019 ◽  
Vol 26 (5) ◽  
pp. 1099-1115 ◽  
Author(s):  
Hamid Maleki ◽  
Jalal Alsarraf ◽  
Abbas Moghanizadeh ◽  
Hassan Hajabdollahi ◽  
Mohammad Reza Safaei

Sign in / Sign up

Export Citation Format

Share Document