scholarly journals Effects of Chemical Species and Nonlinear Thermal Radiation with 3D Maxwell Nanofluid Flow with Double Stratification—An Analytical Solution

Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 453 ◽  
Author(s):  
Iskander Tlili ◽  
Sania Naseer ◽  
Muhammad Ramzan ◽  
Seifedine Kadry ◽  
Yunyoung Nam

This article elucidates the magnetohydrodynamic 3D Maxwell nanofluid flow with heat absorption/generation effects. The impact of the nonlinear thermal radiation with a chemical reaction is also an added feature of the presented model. The phenomenon of flow is supported by thermal and concentration stratified boundary conditions. The boundary layer set of non-linear PDEs (partial differential equation) are converted into ODEs (ordinary differential equation) with high nonlinearity via suitable transformations. The homotopy analysis technique is engaged to regulate the mathematical analysis. The obtained results for concentration, temperature and velocity profiles are analyzed graphically for various admissible parameters. A comparative statement with an already published article in limiting case is also added to corroborate our presented model. An excellent harmony in this regard is obtained. The impact of the Nusselt number for distinct parameters is also explored and discussed. It is found that the impacts of Brownian motion on the concentration and temperature distributions are opposite. It is also comprehended that the thermally stratified parameter decreases the fluid temperature.

Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 849 ◽  
Author(s):  
Muhammad Ramzan ◽  
Asma Liaquet ◽  
Seifedine Kadry ◽  
Sungil Yu ◽  
Yunyoung Nam ◽  
...  

The present research examines the impact of second-order slip with thermal and solutal stratification coatings on three-dimensional (3D) Williamson nanofluid flow past a bidirectional stretched surface and envisages it analytically. The novelty of the analysis is strengthened by Cattaneo–Christov (CC) heat flux accompanying varying thermal conductivity. The appropriate set of transformations is implemented to get a differential equation system with high nonlinearity. The structure is addressed via the homotopy analysis technique. The authenticity of the presented model is verified by creating a comparison with the limited published results and finding harmony between the two. The impacts of miscellaneous arising parameters are deliberated through graphical structures. Some useful tabulated values of arising parameters versus physical quantities are also discussed here. It is observed that velocity components exhibit an opposite trend with respect to the stretching ratio parameter. Moreover, the Brownian motion parameter shows the opposite behavior versus temperature and concentration distributions.


Author(s):  
Shafiq Ahmad ◽  
Muhammmad Naveed Khan ◽  
Sohail Nadeem ◽  
Aysha Rehman ◽  
Hijaz Ahmad ◽  
...  

Abstract This manuscript presents a study of three-dimensional MHD Maxwell nanofluid flow across a slendering stretched surface with Joule heating. The impact of binary chemical reactions, heat generation, thermal radiation, and thermophoretic effect is also taken into consideration. The multiple slip boundary conditions are utilized at the boundary of the surface. The appropriate similarity variable is used to transfer the flow modeled equations into ODEs, which are numerically solved by the utilization of the MATLAB bvp4c algorithm. The involved parameter's impact on the concentration, velocity, and temperature distribution are scrutinized with graphs. The transport rates (mass, heat) are also investigated using the same variables, with the results reported in tabulated form. It is seen that the fluid relaxation, magnetic, and wall thickness characteristics diminish the velocities of fluid. Further, the velocity, concentration, and temperature slip parameters reduce the velocities of fluid, temperature, and concentration distribution. The results are compared to existing studies and showed to be in dependable agreement.


2019 ◽  
Vol 9 (8) ◽  
pp. 1533 ◽  
Author(s):  
Zahir Shah ◽  
Abdullah Dawar ◽  
Poom Kumam ◽  
Waris Khan ◽  
Saeed Islam

Nanoscience can be stated as a superlative way of changing the properties of a working fluid. Heat transmission features during the flow of nanofluids are an imperative rule from the industrial and technological point of view. This article presents a thin film flow of viscous nanofluids over a horizontal rotating disk. The impact of non-linear thermal radiation and a uniform magnetic field is emphasized in this work. The governing equations were transformed and solved by the homotopy analysis method and the ND-Solve technique. Both analytical and numerical results are compared graphically and numerically, and excellent agreement was obtained. Skin friction and the Nusselt number were calculated numerically. It is concluded that the thin film thickness of nanofluids reduces with enhanced values of the magnetic parameter. In addition, the nanofluid temperature was augmented with increasing values of the thermal radiation parameter. The impact of emerging parameters on velocities and temperature profiles were obtainable through graphs and were deliberated on in detail.


2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110162
Author(s):  
Aisha Anjum ◽  
Sadaf Masood ◽  
Muhammad Farooq ◽  
Naila Rafiq ◽  
Muhammad Yousaf Malik

This article addresses MHD nanofluid flow induced by stretched surface. Heat transport features are elaborated by implementing double diffusive stratification. Chemically reactive species is implemented in order to explore the properties of nanofluid through Brownian motion and thermophoresis. Activation energy concept is utilized for nano liquid. Further zero mass flux is assumed at the sheet’s surface for better and high accuracy of the out-turn. Trasnformations are used to reconstruct the partial differential equations into ordinary differential equations. Homotopy analysis method is utilized to obtain the solution. Physical features like flow, heat and mass are elaborated through graphs. Thermal stratified parameter reduces the temperature as well as concentration profile. Also decay in concentration field is noticed for larger reaction rate parameter. Both temperature and concentration grows for Thermophoresis parameter. To check the heat transfer rate, graphical exposition of Nusselt number are also discussed and interpret. It is noticed that amount of heat transfer decreases with the increment in Hartmann number. Numerical results shows that drag force increased for enlarged Hartmann number.


Author(s):  
Ghulam Rasool ◽  
Anum Shafiq ◽  
Yu-Ming Chu ◽  
Muhammad Shoaib Bhutta ◽  
Amjad Ali

Introduction: In this article Optimal Homotopy analysis method (oHAM) is used for exploration of the features of Cattaneo-Christov model in viscous and chemically reactive nanofluid flow through a porous medium with stretching velocity at the solid/sheet surface and free stream velocity at the free surface. Methods: The two important aspects, Brownian motion and Thermophoresis are considered. Thermal radiation is also included in present model. Based on the heat and mass flux, the Cattaneo-Christov model is implemented on the Temperature and Concentration distributions. The governing Partial Differential Equations (PDEs) are converted into Ordinary Differential Equations (ODEs) using similarity transformations. The results are achieved using the optimal homotopy analysis method (oHAM). The optimal convergence and residual errors have been calculated to preserve the validity of the model. Results: The results are plotted graphically to see the variations in three main profiles i.e. momentum, temperature and concentration profile. Conclusion: The outcomes indicate that skin friction enhances due to implementation of Darcy medium. It is also noted that the relaxation time parameter results in enhancement of the temperature distribution. Thermal radiation enhances the temperature distribution and so is the case with skin friction.


Sign in / Sign up

Export Citation Format

Share Document