A methylammonium iodide healing method for CH3NH3PbI3 perovskite solar cells with high fill factor over 80%

2021 ◽  
Vol 42 (11) ◽  
pp. 112202
Author(s):  
Zhen Li ◽  
Guanjun Yang

Abstract Repressing the thermal decomposition during the process of heat treatment plays an indispensable part in the preparation of perovskite films. Here, a methylammonium iodide healing method was applied to prevent the volatilization of the organic component inside the perovskite structure during the heat treatment. High-quality CH3NH3PbI3 film with a much larger grain size over 800 nm was successfully fabricated via this healing method. Besides, the absorption and photoluminescence intensity were also both improved. Finally, the best power conversion efficiency of 18.89% with a fill factor over 80% was realized in an n–i–p configuration while possessing outstanding stability. This work suggests that methylammonium iodide healing method is a reliable way to promote crystal growth and improve the photovoltaic performance and humidity stability of the CH3NH3PbI3 solar cells.

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2909
Author(s):  
Masfer Alkahtani ◽  
Anas Ali Almuqhim ◽  
Hussam Qasem ◽  
Najla Alsofyani ◽  
Anfal Alfahd ◽  
...  

In this work, we report an easy, efficient method to synthesize high quality lithium-based upconversion nanoparticles (UCNPs) which combine two promising materials (UCNPs and lithium ions) known to enhance the photovoltaic performance of perovskite solar cells (PSCs). Incorporating the synthesized YLiF4:Yb,Er nanoparticles into the mesoporous layer of the PSCs cells, at a certain doping level, demonstrated a higher power conversion efficiency (PCE) of 19%, additional photocurrent, and a better fill factor (FF) of 82% in comparison to undoped PSCs (PCE = ~16.5%; FF = 71%). The reported results open a new avenue toward efficient PSCs for renewable energy applications.


2017 ◽  
Vol 1 (8) ◽  
pp. 1520-1525 ◽  
Author(s):  
Mohammad Mahdi Tavakoli ◽  
Abdolreza Simchi ◽  
Xiaoliang Mo ◽  
Zhiyong Fan

Fabrication of efficient perovskite solar cells (with a high fill factor) using layer-by-layer alternating (LBLA) vacuum deposition with highly crystalline and uniform perovskite films.


2020 ◽  
Vol 11 (16) ◽  
pp. 2883-2888 ◽  
Author(s):  
Liuyuan Lan ◽  
Xiang Deng ◽  
Jie Zhang ◽  
Jingdong Luo ◽  
Alex K.-Y. Jen

Mitsunobu post-functionalization was utilized to construct a new efficient dopant-free side-chain hole transporting polymer for inverted perovskite solar cells, exhibiting a power conversion efficiency of 17.75% and a high fill factor over 81%.


RSC Advances ◽  
2020 ◽  
Vol 10 (33) ◽  
pp. 19513-19520 ◽  
Author(s):  
Miao Yu ◽  
Lijia Chen ◽  
Guannan Li ◽  
Cunyun Xu ◽  
Chuanyao Luo ◽  
...  

The charge transfer hindrance of adsorbed oxygen species on SnO2 is successfully reduced by modifying it with guanidinium chloride, improving the power conversion efficiency from 15.33% to 18.46% (after modification) with maximum fill factor of 80%.


2018 ◽  
Vol 6 (46) ◽  
pp. 23865-23874 ◽  
Author(s):  
Jiaqi Cheng ◽  
Hong Zhang ◽  
Shaoqing Zhang ◽  
Dan Ouyang ◽  
Zhanfeng Huang ◽  
...  

Incorporation of non-fullerene acceptor into perovskite precursor solution is demonstrated to form high-quality perovskite films with low defect concentrations. The power conversion efficiency of low-temperature processed perovskite solar cells is improved up to 20.10%.


2017 ◽  
Vol 9 (50) ◽  
pp. 43902-43909 ◽  
Author(s):  
Lijun Hu ◽  
Kuan Sun ◽  
Ming Wang ◽  
Wei Chen ◽  
Bo Yang ◽  
...  

2017 ◽  
Vol 5 (39) ◽  
pp. 10280-10287 ◽  
Author(s):  
Cong Chen ◽  
Guang Yang ◽  
Junjie Ma ◽  
Xiaolu Zheng ◽  
Zhiliang Chen ◽  
...  

We showed that perovskite solar cells employing Li-treated NiOxas a hole transport layer demonstrated excellent photovoltaic performance, and obtained a power conversion efficiency of up to 18.03%. In addition, the device possessed good long-term stability.


2019 ◽  
Vol 7 (9) ◽  
pp. 4977-4987 ◽  
Author(s):  
Jiangzhao Chen ◽  
Seul-Gi Kim ◽  
Xiaodong Ren ◽  
Hyun Suk Jung ◽  
Nam-Gyu Park

Fabrication of high-quality perovskite films with a large grain size and fewer defects is always crucial to achieve efficient and stable perovskite solar cells (PSCs).


2020 ◽  
pp. 2150096
Author(s):  
Jing Gao ◽  
Chujian Liao ◽  
Yanqun Guo ◽  
Difan Zhou ◽  
Zhigang Zeng ◽  
...  

The perovskite membrane with large particle size, uniform coverage and high quality is the prerequisite for the preparation of efficient and stable perovskite solar cells. Various additives have been used to increase the grain size and improve the film morphology and crystal quality. In this paper, methylammonium chloride (MACl) was proposed to obtain high crystalline quality of [Formula: see text] perovskite absorption layer. The results show that the adding ammonium methyl chloride into the precursor of tricationic perovskite not only passivates surface defects to form high-quality and large-grain perovskite films, but also facilitates the formation of pure [Formula: see text]-phase [Formula: see text]. Meanwhile, the designed perovskite precursor solutions were used to fabricate mesoporous perovskite solar cells (PSCs). Owing to the perovskite layer consisting of optimized MACl doping, the short-circuit current density [Formula: see text] of PSCs reaches 23.81 mA/cm2, which is 2.73 mA/cm2 higher than the primary [Formula: see text] based on PSCs. The obtained power conversion efficiency (PCE) increases from 13.67% to 17.59%.


Sign in / Sign up

Export Citation Format

Share Document