Electrochemical microelectrode degradation monitoring: in situ investigation of platinum corrosion at neutral pH

Author(s):  
Moritz Doering ◽  
Jochen Kieninger ◽  
Gerald Urban ◽  
Andreas Weltin

Abstract Objective. The stability of platinum and other noble metal electrodes is critical for neural implants, electrochemical sensors, and energy sources. Beyond the acidic or alkaline environment found in most electrochemical studies, the investigation of electrode corrosion in neutral pH and chloride containing electrolytes is essential, particularly regarding the long-term stability of neural interfaces, such as brain stimulation electrodes or cochlear implants. In addition, the increased use of microfabricated devices demands the investigation of thin-film electrode stability. Approach. We developed a procedure of electrochemical methods for continuous tracking of electrode degradation in situ over the complete life cycle of platinum thin-film microelectrodes in a unique combination with simultaneous chemical sensing. We used chronoamperometry and cyclic voltammetry to measure electrode surface and analyte redox processes, together with accelerated electrochemical degradation. Main results. We compared degradation between thin-film microelectrodes and bulk electrodes, neutral to acidic pH, different pulsing schemes, and the presence of the redox active species oxygen and hydrogen peroxide. Results were confirmed by mechanical profilometry and microscopy to determine material changes on a nanometer scale. We found that electrode degradation is mainly driven by repeated formation and removal of the platinum surface oxide, also within the electrochemical stability window of water. There was no considerable difference between thin-film micro- and macroscopic bulk electrodes or in the presence of reactive species, whereas acidic pH or extending the potential window led to increased degradation. Significance. Our results provide valuable fundamental information on platinum microelectrode degradation under conditions found in biomedical applications. For the first time, we deployed a unified method to report quantitative data on electrode degradation up to a defined endpoint. Our method is a widely applicable framework for comparative long-term studies of sensor and neural interface stability.

2008 ◽  
Vol 62 (17-18) ◽  
pp. 2654-2656 ◽  
Author(s):  
H.H. Liu ◽  
X.K. Duan ◽  
R.C. Che ◽  
Z.F. Wang ◽  
X.F. Duan

1997 ◽  
Vol 485 ◽  
Author(s):  
D. Wolf ◽  
G. Müller

AbstractStudies of the reaction path during annealing of Cu-In-Se thin films for solar cell absorbers have been limited up to now to ex-situ analyses of the phase composition by X-Ray Diffraction (XRD) after processing by a specific temperature-time program. As an indirect method, the application of ex-situ XRD is not sufficient for the determination of reaction temperatures and reaction times for setting up a general model of CIS-formation.We show in this paper that the use of a calorimetric method (Thin Film Calorimetry, TFC) offers the advantage of a direct (in-situ) observation of thin film reactions. Special care is taken to use film thicknesses of practical interest for industrial application (1.5 – 3 μm). In a first step we show results of binary reactions in the Cu-In, In-Se and Cu-Se systems. Their knowledge is necessary for understanding the processes involved in the ternary CIS-layers. It turned out that thin Cu-In and Cu-Se films react already at room temperature and behave as predicted by the bulk equilibrium phase diagrams during heating. In-Se thin films show prominent exothermic reactions starting with the melting of In. The first phase to be formed is generally In2Se which is then converted to more Se-rich compounds. In ternary Cu-In-Se films (Cu/In = 1.00) we observe transitions of the Cu-Se-system which can be attributed to the decomposition of CuSe2 and CuSe. Consequences for the model of improved CIS-growth by a Cu-Se flux agent are discussed.


Author(s):  
Abdessalem Aribia ◽  
Jordi Sastre ◽  
Xubin Chen ◽  
Evgeniia Gilshtein ◽  
Moritz Futscher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document