scholarly journals Determination of the Extent of Fraction in Air Separation of Grain Material

2018 ◽  
Vol 1059 ◽  
pp. 012001
Author(s):  
V V Piven
Keyword(s):  
Author(s):  
Justin Zachary ◽  
Alex Khochafian

Based on the present revival of coal as the fossil fuel of choice for power generation, there is a high probability that several IGCC projects will materialize in the near future. One of the challenges facing the Owners, EPC Contractors and OEM’s will be to define the performance commercial guarantees and the practical means to determine them. In addition following the current huge upturn in conventional supercritical coal fired power plants, a large number of facilities will conduct thermal performance tests. The proper conductance of the test, data collection and correction to reference conditions, have many technical implications and could affect drastically the commercial outcome of a project both for the Contractor and the Owner. For IGCC plants, in anticipation of this probability, ASME Performance Test Committee had developed a Performance Test Code for such type of plant — PTC 47, which was published in January 2007. In the first part, the paper will provide details about the specific challenges facing the implementation of the Code, in particular the proposed use of the input/output method (mass and energy balance). The presentation will cover other highlights of the code recommendations. The methodology is fully applicable to conventional power plants, since they use same type of fuel. The determination of the heat input based on actual continuous measurement of the mass flow and composition of the coal will be discussed in details. The practicality and the measurement uncertainty associated with fuel composition will also be analyzed. A comparison with the indirect method for determination of the heat input will also be presented. The article will evaluate how the code requirements are reflected in the definition of the power plant design, configuration and instrumentation. The implications of test tolerance as a commercial issue and measurement uncertainty as a technical issue will also be presented and evaluated Other unique aspects of the entire IGCC plant performance testing will be discussed: (1) stability criteria related to the gasification and integration processes, (2) corrections from test to guarantees conditions due to complex chemical, mechanical processes. Finally, the article will indicate the progress on the development of performance evaluation methodologies for other main IGCC components: gasifier, air separation unit, gas cleaning systems and Power Island.


1995 ◽  
Vol 38 (5) ◽  
pp. 22-29
Author(s):  
James McAndrew ◽  
Ronald Inman ◽  
Benjamin Jurcik

Tunable diode laser absorption spectroscopy (TDLAS) is a novel tool for purity measurement in microelectronic process gases and environments. It is compatible with any matrix gas and extremely sensitive. This paper describes the application of a laboratory TDLAS instrument to measurement of CO, CO2, and H2O with sub-ppb sensitivity, including determination of a CO level of 0.35± 0.2 ppb in nitrogen samples from an air separation plant. Fluid dynamic simulation was used to optimize the design of the cell used for H20 measurements. TDLAS lends itself to the study of contamination sources in situ. As examples, measurements of CO generation in sampling vessels and of CO2 outgassing in an electropolished stainless steel chamber are briefly discussed.


1966 ◽  
Vol 25 ◽  
pp. 93-97
Author(s):  
Richard Woolley

It is now possible to determine proper motions of high-velocity objects in such a way as to obtain with some accuracy the velocity vector relevant to the Sun. If a potential field of the Galaxy is assumed, one can compute an actual orbit. A determination of the velocity of the globular clusterωCentauri has recently been completed at Greenwich, and it is found that the orbit is strongly retrograde in the Galaxy. Similar calculations may be made, though with less certainty, in the case of RR Lyrae variable stars.


1999 ◽  
Vol 190 ◽  
pp. 549-554
Author(s):  
Nino Panagia

Using the new reductions of the IUE light curves by Sonneborn et al. (1997) and an extensive set of HST images of SN 1987A we have repeated and improved Panagia et al. (1991) analysis to obtain a better determination of the distance to the supernova. In this way we have derived an absolute size of the ringRabs= (6.23 ± 0.08) x 1017cm and an angular sizeR″ = 808 ± 17 mas, which give a distance to the supernovad(SN1987A) = 51.4 ± 1.2 kpc and a distance modulusm–M(SN1987A) = 18.55 ± 0.05. Allowing for a displacement of SN 1987A position relative to the LMC center, the distance to the barycenter of the Large Magellanic Cloud is also estimated to bed(LMC) = 52.0±1.3 kpc, which corresponds to a distance modulus ofm–M(LMC) = 18.58±0.05.


1961 ◽  
Vol 13 ◽  
pp. 29-41
Author(s):  
Wm. Markowitz
Keyword(s):  

A symposium on the future of the International Latitude Service (I. L. S.) is to be held in Helsinki in July 1960. My report for the symposium consists of two parts. Part I, denoded (Mk I) was published [1] earlier in 1960 under the title “Latitude and Longitude, and the Secular Motion of the Pole”. Part II is the present paper, denoded (Mk II).


1972 ◽  
Vol 1 ◽  
pp. 27-38
Author(s):  
J. Hers

In South Africa the modern outlook towards time may be said to have started in 1948. Both the two major observatories, The Royal Observatory in Cape Town and the Union Observatory (now known as the Republic Observatory) in Johannesburg had, of course, been involved in the astronomical determination of time almost from their inception, and the Johannesburg Observatory has been responsible for the official time of South Africa since 1908. However the pendulum clocks then in use could not be relied on to provide an accuracy better than about 1/10 second, which was of the same order as that of the astronomical observations. It is doubtful if much use was made of even this limited accuracy outside the two observatories, and although there may – occasionally have been a demand for more accurate time, it was certainly not voiced.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


1975 ◽  
Vol 26 ◽  
pp. 341-380 ◽  
Author(s):  
R. J. Anderle ◽  
M. C. Tanenbaum

AbstractObservations of artificial earth satellites provide a means of establishing an.origin, orientation, scale and control points for a coordinate system. Neither existing data nor future data are likely to provide significant information on the .001 angle between the axis of angular momentum and axis of rotation. Existing data have provided data to about .01 accuracy on the pole position and to possibly a meter on the origin of the system and for control points. The longitude origin is essentially arbitrary. While these accuracies permit acquisition of useful data on tides and polar motion through dynamio analyses, they are inadequate for determination of crustal motion or significant improvement in polar motion. The limitations arise from gravity, drag and radiation forces on the satellites as well as from instrument errors. Improvements in laser equipment and the launch of the dense LAGEOS satellite in an orbit high enough to suppress significant gravity and drag errors will permit determination of crustal motion and more accurate, higher frequency, polar motion. However, the reference frame for the results is likely to be an average reference frame defined by the observing stations, resulting in significant corrections to be determined for effects of changes in station configuration and data losses.


1979 ◽  
Vol 44 ◽  
pp. 349-355
Author(s):  
R.W. Milkey

The focus of discussion in Working Group 3 was on the Thermodynamic Properties as determined spectroscopically, including the observational techniques and the theoretical modeling of physical processes responsible for the emission spectrum. Recent advances in observational techniques and theoretical concepts make this discussion particularly timely. It is wise to remember that the determination of thermodynamic parameters is not an end in itself and that these are interesting chiefly for what they can tell us about the energetics and mass transport in prominences.


Sign in / Sign up

Export Citation Format

Share Document