scholarly journals Proposal of edge-area form removal of cylindrical surfaces containing wide dimples by application of various robust processing techniques

2018 ◽  
Vol 1065 ◽  
pp. 072018 ◽  
Author(s):  
P Podulka
2011 ◽  
Vol 1295 ◽  
Author(s):  
Marc Thomas

ABSTRACTOne of the main driving force for the development of advanced structural materials is weight saving especially in the transportation industry in order to reduce CO2 emission. The utilization of gamma aluminides, as good candidates for aerospace applications, is strongly related to the development of a cost-effective and robust processing route, as far as possible. It is well established that the processing route, i.e. cast, wrought or PM, has a dramatic effect on the microstructure and texture of gamma-TiAl alloys. Therefore, significant microstructural variations through post-heat treatments coupled with compositional modifications can only guarantee a proper balance of desired properties. However, a number of metallurgical factors during the processing steps can contribute to some scattering in properties. This review will highlight several critical process variables in terms of the resulting g-TiAl microstructures. Of primary importance is the as-cast texture which is difficult to control and may contribute to prefer some alternative processing routes to ensure a better repeatability in mechanical results. Some innovative processing techniques for controlling the structure will then be presented. The main point which will be discussed in this paper is whether an approach leading to a robust process would not be at the expense of the high performance of the structural material.


1999 ◽  
Vol 22 (1-2) ◽  
pp. 173-189
Author(s):  
Agnès Tutin

Anaphors constitute a well-known problem in automatic text generation and natural language understanding. Using corpora to deal with such phenomena could help to develop robust processing techniques. Building such resources is, though, a tedious and time-consuming task and could more easily be accomplished by partial automation. In this paper, we show how the intex system can be used for this task. We show that in a newspaper corpus (in this case, le Monde Diplomatique), discursive grammatical anaphors can easily be located via associated linguistic features. A series of transducers generating tags for categories and functions can thus be built, and constitutes an efficient pre-processing stage (though manual checking remains necessary). The heuristics, quickly and easily developed, are specific to the task. The study goes on to show, however, that discarding non-anaphoric pronouns is not straightforward in the case of non-referential personal pronouns or indefinite pronouns, and that the tagging of the grammatical function seems limited in the absence of real syntactic processing.


2006 ◽  
Vol 20 (4) ◽  
pp. 441-467 ◽  
Author(s):  
Oytun Turk ◽  
Levent M. Arslan

1992 ◽  
Vol 29 (4) ◽  
pp. 601-608 ◽  
Author(s):  
D. R. Auld ◽  
S. E. Dosso ◽  
D. W. Oldenburg ◽  
L. K. Law

Two major earthquakes, magnitude 7.0 in 1918 and magnitude 7.3 in 1946, have occurred this century in the central region of Vancouver Island, British Columbia, Canada. Levelling data in the region indicate relative uplift of 4 mm/year from 1977 to 1984, followed by subsidence at approximately the same rate over the next 2 years. In response to the observed elevation changes, a program was initiated to investigate if temporal changes in the geoelectrical conductivity might be associated with earthquake occurrence. Beginning in 1986, magnetotelluric (MT) data have been measured annually at a number of sites on central Vancouver Island to monitor the long-term variability of the conductivity of the crust and upper mantle in the region. Robust processing techniques now used in the analysis of MT data enhance the possibility of detecting changes in the conductivity.Past studies involving the monitoring of MT stations have considered temporal change only in terms of the measured responses. However, formulating the inverse problem of constructing conductivity–depth models that vary minimally from year to year allows quantitative investigation of the changes required in the models to accommodate the yearly variations in the data. This provides a method of evaluating the processes and depths involved in observed changes in the data. Our modelling study indicates a small but systematic yearly decrease in conductivity from 1987 to 1990 localized in a conductive zone overlying the subducting Juan de Fuca Plate.


2002 ◽  
Vol 13 (8) ◽  
pp. 1183-1190 ◽  
Author(s):  
S Vanlanduit ◽  
P Guillaume ◽  
J Schoukens

Author(s):  
Michael Grzenda ◽  
Arielle Gamboa ◽  
James Mercado ◽  
Lin Lei ◽  
Jennifer Guzman ◽  
...  

Abstract Melting gels are a class of hybrid organic-inorganic, silica-based sol-gels which are solid below their glass transition temperatures, near room temperature, but show thermoplastic behavior when heated. While this phase change can be repeated multiple times, heating the gel past its consolidation temperature, typically above 130 °C, initiates an irreversible reaction that produces highly crosslinked glassy organic/inorganic materials via hydrolysis and polycondensation. This ability makes melting gels uniquely compatible with processing techniques inaccessible to other sol-gels. By properly tuning their properties, it should be possible to create protective coatings for electronics and anti-corrosive coatings for metals that are highly hydrophobic and insulating. However, melting gel consolidation reactions are highly dependent on charge interactions, raising the question of how these materials will respond to a processing technique, like electrospray deposition (ESD), which is dependent on charge delivery. In this study, we focus on the role that substrate temperature and charge polarity play on film morphology, consolidation chemistry, and surface properties when processing via ESD. Optical images, film thickness measurements, and FTIR were used to characterize the sprayed melting gel with the goal of developing a robust processing space for producing highly cross linked, hydrophobic, dielectric coatings.


Biosensors ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 113
Author(s):  
Marinos Louka ◽  
Efstathios Kaliviotis

Blood coagulation is a defense mechanism, which is activated in case of blood loss, due to vessel damage, or other injury. Pathological cases arise from malfunctions of the blood coagulation mechanism, and rapid growth of clots results in partially or even fully blocked blood vessel. The aim of this work is to characterize blood coagulation, by analyzing the time-dependent structural properties of whole blood, using an inexpensive design and robust processing approaches. The methods used in this work include brightfield microscopy and image processing techniques, applied on finger-prick blood samples. The blood samples were produced and directly utilized in custom-made glass microchannels. Color images were captured via a microscopy-camera setup for a period of 35 min, utilizing three different magnifications. Statistical information was extracted directly from the color components and the binary conversions of the images. The main advantage in the current work lies on a Boolean classification approach utilized on the binary data, which enabled to identify the interchange between specific structural elements of blood, namely the red blood cells, the plasma and the clotted regions, as a result of the clotting process. Coagulation indices produced included a bulk coagulation index, a plasma-reduction based index and a clot formation index. The results produced with the inexpensive design and the low computational complexity in the current approach, show good agreement with the literature, and a great potential for a robust characterization of blood coagulation.


Author(s):  
R. C. Gonzalez

Interest in digital image processing techniques dates back to the early 1920's, when digitized pictures of world news events were first transmitted by submarine cable between New York and London. Applications of digital image processing concepts, however, did not become widespread until the middle 1960's, when third-generation digital computers began to offer the speed and storage capabilities required for practical implementation of image processing algorithms. Since then, this area has experienced vigorous growth, having been a subject of interdisciplinary research in fields ranging from engineering and computer science to biology, chemistry, and medicine.


Author(s):  
S. Hasegawa ◽  
T. Kawasaki ◽  
J. Endo ◽  
M. Futamoto ◽  
A. Tonomura

Interference electron microscopy enables us to record the phase distribution of an electron wave on a hologram. The distribution is visualized as a fringe pattern in a micrograph by optical reconstruction. The phase is affected by electromagnetic potentials; scalar and vector potentials. Therefore, the electric and magnetic field can be reduced from the recorded phase. This study analyzes a leakage magnetic field from CoCr perpendicular magnetic recording media. Since one contour fringe interval corresponds to a magnetic flux of Φo(=h/e=4x10-15Wb), we can quantitatively measure the field by counting the number of finges. Moreover, by using phase-difference amplification techniques, the sensitivity for magnetic field detection can be improved by a factor of 30, which allows the drawing of a Φo/30 fringe. This sensitivity, however, is insufficient for quantitative analysis of very weak magnetic fields such as high-density magnetic recordings. For this reason we have adopted “fringe scanning interferometry” using digital image processing techniques at the optical reconstruction stage. This method enables us to obtain subfringe information recorded in the interference pattern.


Sign in / Sign up

Export Citation Format

Share Document