scholarly journals Development of an Optical Method for the Evaluation of Whole Blood Coagulation

Biosensors ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 113
Author(s):  
Marinos Louka ◽  
Efstathios Kaliviotis

Blood coagulation is a defense mechanism, which is activated in case of blood loss, due to vessel damage, or other injury. Pathological cases arise from malfunctions of the blood coagulation mechanism, and rapid growth of clots results in partially or even fully blocked blood vessel. The aim of this work is to characterize blood coagulation, by analyzing the time-dependent structural properties of whole blood, using an inexpensive design and robust processing approaches. The methods used in this work include brightfield microscopy and image processing techniques, applied on finger-prick blood samples. The blood samples were produced and directly utilized in custom-made glass microchannels. Color images were captured via a microscopy-camera setup for a period of 35 min, utilizing three different magnifications. Statistical information was extracted directly from the color components and the binary conversions of the images. The main advantage in the current work lies on a Boolean classification approach utilized on the binary data, which enabled to identify the interchange between specific structural elements of blood, namely the red blood cells, the plasma and the clotted regions, as a result of the clotting process. Coagulation indices produced included a bulk coagulation index, a plasma-reduction based index and a clot formation index. The results produced with the inexpensive design and the low computational complexity in the current approach, show good agreement with the literature, and a great potential for a robust characterization of blood coagulation.

2020 ◽  
Vol 120 (07) ◽  
pp. 1116-1127 ◽  
Author(s):  
Markandey M. Tripathi ◽  
Diane M. Tshikudi ◽  
Zeinab Hajjarian ◽  
Dallas C. Hack ◽  
Elizabeth M. Van Cott ◽  
...  

AbstractDelayed identification of coagulopathy and bleeding increases the risk of organ failure and death in hospitalized patients. Timely and accurate identification of impaired coagulation at the point-of-care can proactively identify bleeding risk and guide resuscitation, resulting in improved outcomes for patients. We test the accuracy of a novel optical coagulation sensing approach, termed iCoagLab, for comprehensive whole blood coagulation profiling and investigate its diagnostic accuracy in identifying patients at elevated bleeding risk. Whole blood samples from patients (N = 270) undergoing conventional coagulation testing were measured using the iCoagLab device. Recalcified and kaolin-activated blood samples were loaded in disposable cartridges and time-varying intensity fluctuation of laser speckle patterns were measured to quantify the clot viscoelastic modulus during coagulation. Coagulation parameters including the reaction time (R), clot progression time (K), clot progression rate (α), and maximum clot strength (MA) were derived from clot viscoelasticity traces and compared with mechanical thromboelastography (TEG). In all patients, a good correlation between iCoagLab- and TEG-derived parameters was observed (p < 0.001). Multivariate analysis showed that iCoagLab-derived parameters identified bleeding risk with sensitivity (94%) identical to, and diagnostic accuracy (89%) higher than TEG (87%). The diagnostic specificity of iCoagLab (77%) was significantly higher than TEG (69%). By rapidly and comprehensively permitting blood coagulation profiling the iCoagLab innovation is likely to advance the capability to identify patients with elevated risk for bleeding, with the ultimate goal of preventing life-threatening hemorrhage.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1882-1882
Author(s):  
Sina Pourang ◽  
Michael A Suster ◽  
Pedram Mohseni ◽  
Lalitha V Nayak

Abstract Background: There is an intimate link between inflammation and thrombosis, and patients with pro-inflammatory/infectious disorders develop a hypercoagulable state. Extant coagulation assays are unable to distinguish the pro-coagulant state of a patient's blood, require 2-3 mL of blood, and take 2-3 hours for processing. These assays are also typically examined in plasma and do not represent the contribution of blood cellular elements that participate in thrombosis in vivo. Thus, a point-of-care device for rapid, comprehensive assessment of whole blood coagulation is crucial to ensure appropriate and timely evaluation in critically ill patients. We have introduced a microfluidic sensor (ClotChip) that uses dielectric spectroscopy to provide such an assessment in a handheld platform. We have shown in clinical studies in patients with a hypocoagulable state that ClotChip is sensitive to both coagulation factor and platelet defects, allowing for a global assessment of blood coagulation status using &lt;10 µL of whole blood and in &lt;30 min. In this study, we optimized ClotChip to assess the blood coagulation status in patients with a hypercoagulable state. Methods: Citrated blood samples from 12 patients with a diagnosis of sepsis and 11 healthy donors as controls were obtained under an IRB-approved protocol and tested with ClotChip within 2 hours of collection. ClotChip readout curve was calculated as the temporal variation of blood dielectric permittivity at 1 MHz, and the time to reach a permittivity peak (T peak) was taken as an indicator of coagulation time based on our prior studies. To increase the sensitivity of the ClotChip T peak parameter to a hypercoagulable state, we used two different anticoagulants, recombinant thrombomodulin (rTM) and activated protein C (APC). To optimize the anticoagulant concentration, whole blood samples from healthy donors were treated in vitro with lipopolysaccharide to mimic a pro-coagulant state of blood and tested with ClotChip after adding various concentrations of rTM and APC. We concluded that a concentration of 5 µg/mL for rTM and 10 µg/mL for APC would result in an optimal change in T peak for detecting the pro-coagulant state. Since heparin (or lovenox) is routinely used in hospitalized patients, sepsis and control samples were pretreated with hepzyme at a final concentration of 2 IU/mL to reverse the heparin effect. The T peak parameter was measured and compared in (i) hepzyme only-, (ii) rTM-, and (iii) APC-treated samples. Data are reported as mean ± standard deviation. Two-tailed t test is used to test for statistical significance between groups, and P &lt; 0.05 is considered statistically significant. In box-and-whiskers plots, the box represents the range from the first to the third quartile, the horizontal line represents the median, plus sign (+) represents mean of the data; whiskers extend to the maximum and minimum data values, and dots represent individual subject data. Results: In hepzyme only-treated samples, T peak was significantly prolonged at 478±137 sec in sepsis samples, as compared to 357±58 sec in controls (Figs. 1A, 1B). rTM treatment resulted in T peak of 503±128 sec for sepsis samples and 443±81 sec for controls, whereas APC treatment resulted in T peak of 1,095±850 sec for sepsis samples and 477±71 sec for controls (Figs. 1A, 1B). Although T peak was prolonged at baseline in hepzyme only-treated sepsis samples, no further prolongation was noted with rTM treatment (difference in T peak of 24±94 sec; Fig. 1C), as compared to rTM-treated controls (difference in T peak of 85±40 sec; Fig. 1C). However, with a difference in T peak of 616±804 sec, the APC-treated sepsis samples exhibited T peak prolongation when compared to hepzyme only-treated sepsis samples, whereas the APC-treated controls did not (difference in T peak of 119±64 sec; Fig. 1D). A comparison between the APC- and rTM-treated samples revealed a significant prolongation of T peak in sepsis samples (difference in T peak of 591±815 sec) when compared to controls (difference in T peak of 30±66 sec; Fig. 1E). Conclusions: Our studies identify a unique coagulation profile in sepsis patient blood using a microfluidic dielectric sensor. These data suggest that the addition of rTM or APC can enhance the sensitivity of the ClotChip T peak parameter for detecting the pro-coagulant state in whole blood. Ongoing studies are examining the coagulation profile in other pro-inflammatory and infectious states. Figure 1 Figure 1. Disclosures Suster: XaTek Inc.: Consultancy, Current holder of stock options in a privately-held company, Patents & Royalties, Research Funding. Mohseni: XaTek Inc.: Consultancy, Current holder of stock options in a privately-held company, Patents & Royalties, Research Funding. Nayak: BioChip Labs: Current Employment.


1959 ◽  
Vol 109 (1) ◽  
pp. 1-8 ◽  
Author(s):  
John Robbins ◽  
Chandler A. Stetson

Each of several antigen-antibody systems studied has been found to affect the coagulation mechanism in the rabbit, causing a marked shortening of the coagulation time in vitro of samples of whole blood maintained in siliconized glassware. Addition of specific antigen to the blood of actively immunized animals or addition of antigen-antibody mixtures to the blood of normal animals produced the effect. The coagulation time of plasma was not affected, indicating that the phenomenon may be mediated by an effect on platelets. This effect of antigen-antibody interaction may be involved in the production of tissue damage in vivo.


2018 ◽  
Vol 88 (3-4) ◽  
pp. 151-157 ◽  
Author(s):  
Scott W. Leonard ◽  
Gerd Bobe ◽  
Maret G. Traber

Abstract. To determine optimal conditions for blood collection during clinical trials, where sample handling logistics might preclude prompt separation of erythrocytes from plasma, healthy subjects (n=8, 6 M/2F) were recruited and non-fasting blood samples were collected into tubes containing different anticoagulants (ethylenediaminetetra-acetic acid (EDTA), Li-heparin or Na-heparin). We hypothesized that heparin, but not EDTA, would effectively protect plasma tocopherols, ascorbic acid, and vitamin E catabolites (α- and γ-CEHC) from oxidative damage. To test this hypothesis, one set of tubes was processed immediately and plasma samples were stored at −80°C, while the other set was stored at 4°C and processed the following morning (~30 hours) and analyzed, or the samples were analyzed after 6 months of storage. Plasma ascorbic acid, as measured using HPLC with electrochemical detection (LC-ECD) decreased by 75% with overnight storage using EDTA as an anticoagulant, but was unchanged when heparin was used. Neither time prior to processing, nor anticoagulant, had any significant effects upon plasma α- or γ-tocopherols or α- or γ-CEHC concentrations. α- and γ-tocopherol concentrations remained unchanged after 6 months of storage at −80°C, when measured using either LC-ECD or LC/mass spectrometry. Thus, refrigeration of whole blood at 4°C overnight does not change plasma α- or γ-tocopherol concentrations or their catabolites. Ascorbic acid is unstable in whole blood when EDTA is used as an anticoagulant, but when whole blood is collected with heparin, it can be stored overnight and subsequently processed.


2010 ◽  
Vol 41 (02) ◽  
Author(s):  
N Shazi ◽  
A Böss ◽  
HJ Merkel ◽  
F Scharbert ◽  
D Hannak ◽  
...  

1966 ◽  
Vol 15 (03/04) ◽  
pp. 519-538 ◽  
Author(s):  
J Levin ◽  
E Beck

SummaryThe role of intravascular coagulation in the production of the generalized Shwartzman phenomenon has been evaluated. The administration of endotoxin to animals prepared with Thorotrast results in activation of the coagulation mechanism with the resultant deposition of fibrinoid material in the renal glomeruli. Anticoagulation prevents alterations in the state of the coagulation system and inhibits development of the renal lesions. Platelets are not primarily involved. Platelet antiserum produces similar lesions in animals prepared with Thorotrast, but appears to do so in a manner which does not significantly involve intravascular coagulation.The production of adrenal cortical hemorrhage, comparable to that seen in the Waterhouse-Friderichsen syndrome, following the administration of endotoxin to animals that had previously received ACTH does not require intravascular coagulation and may not be a manifestation of the generalized Shwartzman phenomenon.


1997 ◽  
Vol 77 (05) ◽  
pp. 0920-0925 ◽  
Author(s):  
Bernd Pötzsch ◽  
Katharina Madlener ◽  
Christoph Seelig ◽  
Christian F Riess ◽  
Andreas Greinacher ◽  
...  

SummaryThe use of recombinant ® hirudin as an anticoagulant in performing extracorporeal circulation systems including cardiopulmonary bypass (CPB) devices requires a specific and easy to handle monitoring system. The usefulness of the celite-induced activated clotting time (ACT) and the activated partial thromboplastin time (APTT) for r-hirudin monitoring has been tested on ex vivo blood samples obtained from eight patients treated with r-hirudin during open heart surgery. The very poor relationship between the prolongation of the ACT and APTT values and the concentration of r-hirudin as measured using a chromogenic factor Ila assay indicates that both assays are not suitable to monitor r-hirudin anticoagulation. As an alternative approach a whole blood clotting assay based on the prothrombin-activating snake venom ecarin has been tested. In vitro experiments using r-hirudin- spiked whole blood samples showed a linear relationship between the concentration of hirudin added and the prolongation of the clotting times up to a concentration of r-hirudin of 4.0 µg/ml. Interassay coefficients (CV) of variation between 2.1% and 5.4% demonstrate the accuracy of the ecarin clotting time (ECT) assay. Differences in the interindividual responsiveness to r-hirudin were analyzed on r-hirudin- spiked blood samples obtained from 50 healthy blood donors. CV- values between 1.8% and 6% measured at r-hirudin concentrations between 0.5 and 4 µg/ml indicate remarkably slight differences in r-hirudin responsiveness. ECT assay results of the ex vivo blood samples linearily correlate (r = 0.79) to the concentration of r-hirudin. Moreover, assay results were not influenced by treatment with aprotinin or heparin. These findings together with the short measuring time with less than 120 seconds warrant the whole blood ECT to be a suitable assay for monitoring of r-hirudin anticoagulation in cardiac surgery.


Sign in / Sign up

Export Citation Format

Share Document