scholarly journals Evaluating the grinding ratio and surface quality of Ti-6Al-4V under varying grinding pass count and depth of cut

2019 ◽  
Vol 1240 ◽  
pp. 012143 ◽  
Author(s):  
Bishan Raj Rai ◽  
Manish Mukhopadhyay ◽  
Pranab Kumar Kundu
2019 ◽  
Vol 26 (1) ◽  
pp. 41-48
Author(s):  
Erkan BAHÇE ◽  
M. Sami GÜLER ◽  
Ender EMİR

CoCrMo alloys, which are well-known Co-based biomedical alloys, have many different types of surface integrity problems reported in literature. Residual stresses, white layer formation and work hardening layers are some those, matters which occur as a microstructural alteration during machining. Therefore, such problems should be solved and surface quality of end products should be improved. In this paper, the surface quality of CoCrMo alloy used in tibial component of the knee prosthesis produced by means of turning was investigated. An improvement was suggested and discussed for the improvement in their machinability with the developed turning-grinding method. Finite element analyses were also carried out to calculate temperature and thermal stresses distribution between the tool and the tibial component. The results showed that many parameters such as cutting speed, feed rate, depth of cut, tool geometry, and tool wear affect the surface quality of workpieces of CoCrMo alloy. In the turning-grinding method, the machining time is reduced by about six times compared to machining only method. The EDX analysis performed on the surface after machining showed that metal diffusion occurred from tool to the tibial component.


2019 ◽  
Vol 19 (01) ◽  
pp. 2050006 ◽  
Author(s):  
Muhammad Owais Qadri ◽  
Hamidreza Namazi

Analysis of surface quality of machined workpiece is an important issue in machining of materials. For this purpose, scientists analyze how the texture of machined surface changes due to different conditions. Machine vibration is one of the factors that highly affects the surface quality of machined surface. In this research, we analyze the relation between machine vibration and surface quality of machined workpiece. For this purpose, we employ fractal theory and analyze how the complex structure of machined surface changes with the complex structure of machine vibration signal in case of variations of machining parameters, namely, depth of cut, feed rate and spindle speed, in milling operation. Based on the results, variations of surface quality of machined workpiece are related with the variations of complexity of machine vibration signal. The method of analysis employed in this research can be applied to other machining operations in order to find the relation between machine vibration and surface quality of machined workpiece.


Fractals ◽  
2019 ◽  
Vol 27 (06) ◽  
pp. 1950087 ◽  
Author(s):  
ASHFAQ AHAMED ◽  
ATHIF AHAMED ◽  
DILAN KATUWAWALA ◽  
TEOH TIONG EE ◽  
ZI HAN TAN ◽  
...  

Drilling is a famous and widely used machining operation to make holes in the workpiece. The size and surface quality of drilled hole are two factors that should be considered mainly. In this research, we examine the effect of different machining parameters and conditions on the surface quality of generated hole in drilling operation. For this purpose, we employ fractal theory and investigate how the variations of depth of cut and spindle speed affect the complexity of surface texture of drilled holes in wet and dry machining conditions. Based on the obtained results, the increment of depth of cut and spindle speed in case of wet and dry machining causes lower complexity on the generated surface from drilling. In addition, the generated surface from dry machining is more complex than the generated surface from wet machining. The obtained method in this research can be applied to other machining operations in order to investigate the effect of machining parameters and conditions on the surface quality of machined workpiece.


2014 ◽  
Vol 625 ◽  
pp. 742-747
Author(s):  
C.H. Mak ◽  
C.F. Cheung ◽  
M.J. Ren ◽  
L.B. Kong ◽  
S. To

This paper presents a study of cutting strategies on the surface generation in single-point diamond turning of micro V-groove patterns on precision roller drums. An aluminium precision roller drum with a diameter 250mm and 100 long was diamond turned with a V-groove pattern. A series of cutting experiments were designed to study the effect of the variation of various cutting parameters and cutting tool paths on the surface quality in diamond turning of the precision roller drum. The parameters under investigation included the depth of cut, number of steps and the depth for each cut when diamond turning V-grooves on the cylindrical surface of a workpiece. The measurement result indicates that the surface quality of V-grooves machined on the precision roller drums is affected by cutting strategies. The optimal cutting strategy for machining a V-groove pattern on a precision drum with 5µm depth was obtained.


2016 ◽  
Vol 863 ◽  
pp. 111-115 ◽  
Author(s):  
Saiful Bahri Mohamed ◽  
Wan Noor Fatihah Mohamad ◽  
Martini Muhamad ◽  
Jailani Ismail ◽  
Been Seok Yew ◽  
...  

The use of hybrid composite materials has increased due to their special mechanical and physical properties. However, machining of these materials is extremely difficult due to non-homogeneous, anisotropic and highly abrasive characteristics. The performance of machined surface quality of CFRP/Al2024 was described using two level factorial methodology. This research aims to study the interaction effects and significant factors of cutting parameters on the surface quality and optimise the cutting parameter for the surface quality of CFRP/Al2024 1μm to 2μm. The trimming process test was performed under dry conditions using burr tools 6mm diameter of end mills. The factors investigated were spindle speed (N), feed rate (fr) and depth of cut (dc), meanwhile profile roughness parameters (Ra) of CFRP and Al2024 were the response variables. Results show that the best estimated value of fr should be 500 mm/min to 530 mm/min, N is between and 2313.870 rpm to 2336.042 rpm. For both responses, N is the most significant effect followed by fr and dc.


2006 ◽  
Vol 315-316 ◽  
pp. 725-730 ◽  
Author(s):  
Ming Jun Chen ◽  
Ying Chun Liang ◽  
Jing He Wang ◽  
Shen Dong

In order to machine high accuracy Potassium Dihydrogen Phosphate (KDP) crystal part, the indentation experiments are carried out with various loads and various orientation angles. The experimental results show that the critical condition of brittle-ductile transition of KDP has strong anisotropy. Therefore, the influence factors on the surface quality of crystal KDP was discussed, it is shown that influences of the tool's geometry parameter, feed rate and Nominal depth of cut etc on the surface quality of KDP are main. Afterwards the cutting experimental study on crystal KDP material is carried out. The experimental results show that the super-smooth surface quality only can be obtained while KDP is ultra-precision machined in ductile mode.


Fractals ◽  
2019 ◽  
Vol 27 (05) ◽  
pp. 1950076 ◽  
Author(s):  
KUSHAL BISSOONAUTH ◽  
HAMIDREZA NAMAZI

Acquiring the desired surface quality is one of the major efforts in machining of materials. Milling operation is a widely used machining operation to shape the material in different forms. Machining parameters and conditions are two major factors that affect the surface quality of machined workpiece in milling operation. In this paper, we analyze the surface finish of machined workpiece under the variations of machining parameters and conditions (wet and dry conditions) in milling operation. For our analysis, we use fractal dimension as the indicator of complexity of structure. Based on the obtained results, in the case of wet machining condition, by increasing the depth of cut, feed rate and spindle speed in separate experiments, the fractal dimension of machined surface increases. However, the obtained results in the case of dry machining condition are not consistent with the variations of different machining parameters. The obtained results will be discussed in terms of complex structure of machined surface. The method of analysis employed in this research can be investigated with other machining operations to check how the machining parameters and conditions affect the surface quality of machined surface.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
M. Nurhaniza ◽  
M. K. A. M. Ariffin ◽  
F. Mustapha ◽  
B. T. H. T. Baharudin

The quality of the machining is measured from surface finished and it is considered as the most important aspect in composite machining. An appropriate and optimum machining parameters setting is crucial during machining operation in order to enhance the surface quality. The objective of this research is to analyze the effect of machining parameters on the surface quality of CFRP-Aluminium in CNC end milling operation with PCD tool. The milling parameters evaluated are spindle speed, feed rate, and depth of cut. The L9 Taguchi orthogonal arrays, signal-to-noise (S/N) ratio, and analysis of variance (ANOVA) are employed to analyze the effect of these cutting parameters. The analysis of the results indicates that the optimal cutting parameters combination for good surface finish is high cutting speed, low feed rate, and low depth of cut.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2175
Author(s):  
Cheng Guo ◽  
Xiaohua Liu ◽  
Guang Liu

In recent years, many investigations have been devoted to fused deposition modeling (FDM) of high-performance polymer-polyetheretherketone (PEEK) and carbon-fiber-reinforced PEEK (CF/PEEK) for biomedical and aerospace applications. However, the staircase effect naturally brought about by FDM restricts further applications of 3D-printed PEEK and its composites in high-temperature molds, medical implants, and precision components, which require better or customized surface qualities. Hence, this work aimed to reduce the staircase effect and improve the surface quality of 3D-printed PEEK and CF/PEEK parts by dry milling of the fluctuant exterior surface. The co-dependency between 3D printing parameters (raster angle and layer thickness) and milling parameters (depth of cut, spindle speed, and feed rate per tooth) were investigated through experiments. The difference in removal mechanisms for PEEK and CF/PEEK was revealed. It was confirmed that the smearing effect enhanced the surface quality based on the morphology analysis and the simulation model. Both the raster angle of +45°/−45° and the small layer thickness could improve the surface quality of these 3D-printed polymers after dry milling. A large depth of cut and a large feed rate per tooth were likely to deteriorate the finished polymer surface. The spindle speed could influence the morphologies without significant changes in roughness values. Finally, a demonstration was performed to verify that dry milling of 3D-printed amorphous PEEK and CF/PEEK parts could lead to a high surface quality for critical requirements.


Author(s):  
Muhammad Ichsan ◽  
Yufrizal A ◽  
Refdinal Refdinal ◽  
Rifelino Rifelino

The product quality of the production process using such production machine is always associated with dimensional precision, tolerance, and surface roughness. It is difficult to obtain the surface quality of the desired workpiece and yet to be aware of the precise parameters of the chisel eye angle, so that when the surface quality flat suction is not fixed and not as desired Problems in this study. The purpose of the study is to determine the influence of one of the different eye angle variations of the chisel, the Side Rake Angle and the depth of the cut to the small surface roughness value in the workpiece of flat shapping. The method used in this research is the experimental method. The results showed, from nine times the test gained two good tests on the roughness of the ST-37 steel material the first test of variation side rake angle 14 ⁰ at a depth of cut 0.5 mm as many as 3 specimens with a total surface roughness value of three specimens of 3.35 μm and the fourth Test was with a variation of side rake angle 16 ⁰ at a depth of 0.5 mm as many as 3 specimens with a total roughness value of 3.47 μm and a roughness value Each specimen in class N8. Kualitas produk dari proses produksi yang menggunakan mesin-mesin perkakas produksi selalu dikaitkan dengan ketepatan dimensi, toleransi, dan kekasaran permukaan. Sulitnya untuk mendapatkan kualitas  permukaan benda kerja yang di inginkan serta belum diketahuinya parameter sudut mata pahat yang tepat menjadi masalah dalam penelitian ini. Tujuan penelitian adalah untuk mengetahui pengaruh salah satu variasi sudut mata pahat yaitu Side Rake Angle dan kedalaman pemotongan terhadap nilai kekasaran permukaan yang kecil pada benda kerja hasil penyekrapan datar. Metode yang digunakan dalam penelitian ini adalah metode eksperimen. Hasil penelitian menunjukan, dari Sembilan kali pengujian didapat dua pengujian yang bagus terhadap kekasaran bahan baja ST-37 yaitu pada pengujian pertama variasi side rake angle 14⁰ pada kedalaman pemotongan 0,5 mm dengan nilai kekasaran permukaan total ketiga spesimen 3,35 µm dan pengujian keempat yaitu dengan variasi side rake angle 16⁰ pada kedalaman pemotongan 0,5 mm dengan nilai kekasaran total 3,47 µm dan nilai kekasaran masing-masing spesimen pada kelas N8.


Sign in / Sign up

Export Citation Format

Share Document