scholarly journals Computer-aided design software for multi-stage amplifiers with bipolar transistors and field effect

2019 ◽  
Vol 1418 ◽  
pp. 012001 ◽  
Author(s):  
L Ramírez-Carvajal ◽  
G Sierra-Peñaranda ◽  
K Puerto-López ◽  
D Guevara-Ibarra
2016 ◽  
Vol 823 ◽  
pp. 396-401
Author(s):  
Adrian Cuzmoş ◽  
Dorian Nedelcu ◽  
Constantin Viorel Câmpian ◽  
Cristian Fănică ◽  
Ana Maria Budai

The paper presents a method developed and used by the CCHAPT researchers for the graphic plotting of the index tests results for hydraulic turbines, the comparison of the efficiency curves resulted from testing to those obtained by the model transposition [1] i.e. the determination and comparison of the existing combinatory cam with that obtained from tests.The method presented in the paper was born from the need for processing and presenting the results of index tests within the shortest delay and eliminating the errors that might occur in the results plotting.


PLoS ONE ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. e0226322
Author(s):  
Nelson Massanobu Sakaguti ◽  
Mário Marques Fernandes ◽  
Luiz Eugênio Nigro Mazzilli ◽  
Juan Antonio Cobo Plana ◽  
Fernanda Capurucho Horta Bouchardet ◽  
...  

2005 ◽  
Vol 127 (12) ◽  
pp. 32-34
Author(s):  
Jean Thilmany

This article discusses that how mechanical engineers will pair their already-familiar computer-aided design software with not-so-familiar three-dimensional (3D) displays for true 3D design. This is in accordance to a number of vendors' intent on supplying the newfangled computer monitors, within the next two decades. Although some of the devices are already on the market, affordable 3D monitors and displays seem to be more than a decade away, according to one university professor at work on such a project. Widespread adoption is still hindered by factors such as cost, software availability, and lack of a mouse-like device needed to interact with what’s on screen. Over the past 25 years, mechanical engineers have witnessed evolutionary change in design methods-from pen and paper to two-dimensional software and now to 3-D computer-aided design. While software makers have stepped up with sleeker and faster modeling capabilities, visualization lags. Computer users two decades out will carry out all business, web surfing, and gaming on 3-D displays. That next generation may well find the very idea of 2-D monitors to be as dated as record albums seem to teenagers today.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 282 ◽  
Author(s):  
Liang Dai ◽  
Weifeng Lü ◽  
Mi Lin

We investigate the effect of random dopant fluctuation (RDF)-induced variability in n-type junctionless (JL) dual-metal gate (DMG) fin field-effect transistors (FinFETs) using a 3D computer-aided design simulation. We show that the drain voltage (VDS) has a significant impact on the electrostatic integrity variability caused by RDF and is dependent on the ratio of gate lengths. The RDF-induced variability also increases as the length of control gate near the source decreases. Our simulations suggest that the proportion of the gate metal near the source to the entire gate should be greater than 0.5.


2013 ◽  
Vol 554-557 ◽  
pp. 372-382
Author(s):  
Mariusz Skóra ◽  
Stanislaw Weglarczyk ◽  
Jan Kusiak ◽  
Maciej Pietrzyk

Computer aided design of the manufacturing technology for anchors is presented in the paper. Evaluation of applicability of various materials for anchors, as well as analysis of the influence of process parameters on the in use properties of product, were the objectives of the research. In the material part, bainitic steels were considered as an alternative for the commonly used C-Mn steels. Possibility of elimination of the heat treatment was evaluated. Rheological models for the investigated steels were developed and implemented into the finite element code for simulations of drawing and multi stage forging. Criteria for the selection of the best manufacturing chain composed dimensional accuracy, tool life and product properties. Industrial trials were performed for the selected cycle and the efficiency of this cycle was evaluated. Finally, simulations of the in use behaviour of the anchor-concrete joint were performed. On the basis of the simulations the optimization task using strength of the joint as the objective function was formulated


Author(s):  
Sean Peel ◽  
Dominic Eggbeer ◽  
Hanna Burton ◽  
Hayley Hanson ◽  
Peter L Evans

This article compared the accuracy of producing patient-specific cranioplasty implants using four different approaches. Benchmark geometry was designed to represent a cranium and a defect added simulating a craniectomy. An ‘ideal’ contour reconstruction was calculated and compared against reconstructions resulting from the four approaches –‘conventional’, ‘semi-digital’, ‘digital – non-automated’ and ‘digital – semi-automated’. The ‘conventional’ approach relied on hand carving a reconstruction, turning this into a press tool, and pressing titanium sheet. This approach is common in the UK National Health Service. The ‘semi-digital’ approach removed the hand-carving element. Both of the ‘digital’ approaches utilised additive manufacturing to produce the end-use implant. The geometries were designed using a non-specialised computer-aided design software and a semi-automated cranioplasty implant-specific computer-aided design software. It was found that all plates were clinically acceptable and that the digitally designed and additive manufacturing plates were as accurate as the conventional implants. There were no significant differences between the additive manufacturing plates designed using non-specialised computer-aided design software and those designed using the semi-automated tool. The semi-automated software and additive manufacturing production process were capable of producing cranioplasty implants of similar accuracy to multi-purpose software and additive manufacturing, and both were more accurate than handmade implants. The difference was not of clinical significance, demonstrating that the accuracy of additive manufacturing cranioplasty implants meets current best practice.


2019 ◽  
Vol 12 (3) ◽  
pp. 103-110
Author(s):  
Toonlanat Thuanthong ◽  
Paiwan Sudwan

AbstractBackgroundIdentification of sex from skeletal remains is an essential step in forensic anthropology. The skull is the second choice, after the pelvis, to estimate sex by osteometric methods.ObjectiveTo evaluate the process of identification of sex in Northern Thai from crania by using computer-aided design (AutoCAD) software and conventional caliper methods.MethodsDry skulls of 86 men and 74 women were examined. AutoCAD software and digital calipers were used to measure dimensions. Eleven of the 15 parameters were created for this study.ResultsMen are significantly larger than women in all parameters, except in the nasospinale–prosthion measurement. There were no significant differences in the intraobserver error test and between the AutoCAD and digital caliper measurements. The logistic regression analysis yielded a sex classification accuracy rate of 92.9% in men, 93.4% in women, and 93.1% of overall accuracy for AutoCAD software. When using digital calipers, there was an accuracy rate of 89.3% in men, 94.7% in women, and 91.9% for overall accuracy.ConclusionsAutoCAD software is a reliable method to predict the sex and provide high accuracy in sex determination from crania.


Sign in / Sign up

Export Citation Format

Share Document