scholarly journals An Update to the National Renewable Energy Laboratory Baseline Wind Turbine Controller

2020 ◽  
Vol 1452 ◽  
pp. 012002
Author(s):  
Nikhar J. Abbas ◽  
Alan Wright ◽  
Lucy Pao
Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4220 ◽  
Author(s):  
Yaru Yang ◽  
Hua Li ◽  
Jin Yao ◽  
Wenxiang Gao ◽  
Haiyan Peng

In order to study the force and life of the key components in the gearbox of an existing double-rotor wind turbine, the design and structural parameters of the gearbox in the traditional National Renewable Energy Laboratory (NREL) 5 MW single-rotor wind turbine are adopted, and the fixed ring gear of the first planetary stage transmission is released to form a differential gearbox suitable for a double-rotor wind turbine with two inputs. The double input is used to connect the double rotor. Subsequently, the characteristics of the gearbox in a double-rotor wind turbine are discussed. On the basis of the constant rated power of the whole wind turbine, the total power is divided into two parts, which are allocated to the double rotors, then two rotational speeds of the two inputs are given according to different power ratios by complying with the matching principle of force and moment. Furthermore, the force acting on the pitch circle of the planet gear, as well as the force and life of the planet bearing of the two-stage planetary transmission are calculated and compared with a single-rotor wind turbine. The results show that the structural advantages of a double-rotor wind turbine can reduce the stress of key components of the gearbox and increase the life span of the planet bearing, thereby the life of the whole gearbox is improved and the downtime of the whole wind turbine is reduced.


2021 ◽  
Vol 19 ◽  
pp. 487-492
Author(s):  
Á Encalada-Dávila ◽  
◽  
C. Tutivén ◽  
B. Puruncajas ◽  
Y. Vidal ◽  
...  

Nowadays, wind turbine fault detection strategies are settled as a meaningful pipeline to achieve required levels of efficiency, availability, and reliability, considering there is an increasing installation of this kind of machinery, both in onshore and offshore configuration. In this work, it has been applied a strategy that makes use of SCADA data with an increased sampling rate. The employed wind turbine in this study is based on an advanced benchmark, established by the National Renewable Energy Laboratory (NREL) of USA. Different types of faults on several actuators and sensed by certain installed sensors have been studied. The proposed strategy is based on a normality model by means of an autoencoder. As of this, faulty data are used for testing from which prediction errors were computed to detect if those raise a fault alert according to a defined metric which establishes a threshold on which a wind turbine works securely. The obtained results determine that the proposed strategy is successful since the model detects the considered three types of faults. Finally, even when prediction errors are small, the model is able to detect the faults without problems.


2021 ◽  
Vol 166 ◽  
pp. 120631
Author(s):  
Victor Chang ◽  
Yian Chen ◽  
Zuopeng (Justin) Zhang ◽  
Qianwen Ariel Xu ◽  
Patricia Baudier ◽  
...  

Author(s):  
Marcus Wiens ◽  
Sebastian Frahm ◽  
Philipp Thomas ◽  
Shoaib Kahn

AbstractRequirements for the design of wind turbines advance facing the challenges of a high content of renewable energy sources in the public grid. A high percentage of renewable energy weaken the grid and grid faults become more likely, which add additional loads on the wind turbine. Load calculations with aero-elastic models are standard for the design of wind turbines. Components of the electric system are usually roughly modeled in aero-elastic models and therefore the effect of detailed electrical models on the load calculations is unclear. A holistic wind turbine model is obtained, by combining an aero-elastic model and detailed electrical model into one co-simulation. The holistic model, representing a DFIG turbine is compared to a standard aero-elastic model for load calculations. It is shown that a detailed modelling of the electrical components e.g., generator, converter, and grid, have an influence on the results of load calculations. An analysis of low-voltage-ride-trough events during turbulent wind shows massive increase of loads on the drive train and effects the tower loads. Furthermore, the presented holistic model could be used to investigate different control approaches on the wind turbine dynamics and loads. This approach is applicable to the modelling of a holistic wind park to investigate interaction on the electrical level and simultaneously evaluate the loads on the wind turbine.


2016 ◽  
Vol 688 ◽  
pp. 44-49 ◽  
Author(s):  
Iveta Čabalová ◽  
František Kačík ◽  
Tereza Tribulová

Samples prepared from oak (Quercusrobur L.) wood were exposed to heat treatment at temperatures of 160, 180, 200 and 220 oC for 3, 6, 9 and 12 hours. In both untreated and thermally treated wood there were determined extractives and lignin by National Renewable Energy Laboratory (NREL) procedures, cellulose by Seifert's method, holocellulose according to Wise, hemicelluloses as difference between holocellulose and cellulose. Monosaccharides were determined by high performance liquid chromatography (NREL).The results show that hemicelluloses are less stable at thermal treatment than cellulose. The amounts of lignin and extractives rose by increasing both temperature and time of the treatment while the amounts of hemicelluloses decreased. Thermal treatment also resulted in significant decreases of the yields of non-glucosic saccharides. Degradation of carbohydrates can cause the deterioration of mechanical properties of wood.


2015 ◽  
Vol 787 ◽  
pp. 217-221 ◽  
Author(s):  
B. Navin Kumar ◽  
K.M. Parammasivam

Wind energy is one of the most significant renewable energy sources in the world. It is the only promising renewable energy resource that only can satisfy the nation’s energy requirements over the growing demand for electricity. Wind turbines have been installed all over the wind potential areas to generate electricity. The wind turbines are designed to operate at a rated wind velocity. When the wind turbines are exposed to extreme wind velocities such as storm or hurricane, the wind turbine rotates at a higher speed that affects the structural stability of the entire system and may topple the system. Mechanical braking systems and Aerodynamic braking systems have been currently used to control the over speeding of the wind turbine at extreme wind velocity. As a novel approach, it is attempted to control the over speeding of the wind turbine by aerodynamic braking system by providing the chord wise spacing (opening). The turbine blade with chord wise spacing alters the pressure distribution over the turbine blade that brings down the rotational speed of the wind turbine within the allowable limit. In this approach, the over speeding of the wind turbine blades are effectively controlled without affecting the power production. In this paper the different parameters of the chord wise spacing such as position of the spacing, shape of the spacing, width of the spacing and impact on power generation are analyzed and the spacing parameters are experimentally optimized.


2021 ◽  
pp. 1-13
Author(s):  
Khaoula Qaissi ◽  
Omer A Elsayed ◽  
Mustapha Faqir ◽  
Elhachmi Essadiqi

Abstract A wind turbine blade has the particularity of containing twisted and tapered thick airfoils. The challenge with this configuration is the highly separated flow in the region of high twist. This research presents a numerical investigation of the effectiveness of a Vortex Trapping Cavity (VTC) on the aerodynamics of the National renewable Energy laboratory (NREL) Phase VI wind turbine. First, simulations are conducted on the S809 profile to study the fluid flow compared to the airfoil with the redesigned VTC. Secondly, the blade is simulated with and without VTC to assess its effect on the torque and the flow patterns. The results show that for high angles of incidence at Rec=106, the lift coefficient increases by 10% and the wake region appears smaller for the case with VTC. For wind speeds larger than 10 m/s, the VTC improves the torque by 3.9%. This is due to the separation that takes place in the vicinity of the VTC and leads to trapping early separation eddies inside the cell. These eddies roll up forming a coherent laminar vortex structure, which in turn sheds periodically out of the cell. This phenomenon favourably reshapes excessive flow separation, reenergizes the boundary layer and globally improves blade torque.


Sign in / Sign up

Export Citation Format

Share Document