scholarly journals Analysis on the Force and Life of Gearbox in Double-Rotor Wind Turbine

Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4220 ◽  
Author(s):  
Yaru Yang ◽  
Hua Li ◽  
Jin Yao ◽  
Wenxiang Gao ◽  
Haiyan Peng

In order to study the force and life of the key components in the gearbox of an existing double-rotor wind turbine, the design and structural parameters of the gearbox in the traditional National Renewable Energy Laboratory (NREL) 5 MW single-rotor wind turbine are adopted, and the fixed ring gear of the first planetary stage transmission is released to form a differential gearbox suitable for a double-rotor wind turbine with two inputs. The double input is used to connect the double rotor. Subsequently, the characteristics of the gearbox in a double-rotor wind turbine are discussed. On the basis of the constant rated power of the whole wind turbine, the total power is divided into two parts, which are allocated to the double rotors, then two rotational speeds of the two inputs are given according to different power ratios by complying with the matching principle of force and moment. Furthermore, the force acting on the pitch circle of the planet gear, as well as the force and life of the planet bearing of the two-stage planetary transmission are calculated and compared with a single-rotor wind turbine. The results show that the structural advantages of a double-rotor wind turbine can reduce the stress of key components of the gearbox and increase the life span of the planet bearing, thereby the life of the whole gearbox is improved and the downtime of the whole wind turbine is reduced.

Volume 4 ◽  
2004 ◽  
Author(s):  
K. Altaii ◽  
A. Bradway ◽  
A. M. Al-Jumaily

This paper presents the modeling and simulation of a hybrid renewable-energy system. The sizing, availability, and contribution of solar photovoltaic, wind energy and hydro energy can be simulated to determine the viability, stability, and cost effectiveness of such systems. The model allows the user to enter site specific data (hourly, daily, monthly, and annually) such as solar radiation, wind speed and precipitation. Users can select the type and size of wind turbine, hydroelectric turbine, photovoltaic panel and the electrical load placed on the hybrid renewable system. The simulation will determine the total power that can be produced on an hourly, daily, monthly and annual basis, the optimum combination of renewable energies, and usage/storage of each type of renewable energies, given the specified system and the collected data. With the help of HyRES, the model, one can determine which hybrid renewable energy system would best suit a specific site, and also help to determine which type of wind turbine, hydroelectric turbine, or photovoltaic panels would best complement each other for that site.


Author(s):  
B. Boguski ◽  
A. Kahraman

An experimental study on the overall loaded motion transmission error of planetary gear sets is presented in this study. A test rig is designed and procured for the purpose of measuring the input-to-output transmission error of planetary gear sets within a range of input torque. The test matrix includes three distinct phasing conditions (in phase, sequentially phased and counter-phased) of a four-planet gear set as well as two planet tooth profile modifications. Two different power flow conditions with a fixed planet carrier and a fixed ring gear are considered. The transmission error results indicate that the phasing condition of the gear set is the most critical factor resulting in varying levels and numbers of modulation sidebands around the gear mesh orders. Planetary gear sets having in-phase planet meshes exhibit dominant gear mesh harmonic orders with little sideband activity, while sequentially-phased and counter-phased gear sets show an increase in planetary sideband orders associated with the sun, ring and planet gears. In addition, the power flow condition with fixed carrier is shown to have higher root-mean-square amplitudes of transmission error than configuration with a fixed ring gear.


2021 ◽  
Vol 19 ◽  
pp. 487-492
Author(s):  
Á Encalada-Dávila ◽  
◽  
C. Tutivén ◽  
B. Puruncajas ◽  
Y. Vidal ◽  
...  

Nowadays, wind turbine fault detection strategies are settled as a meaningful pipeline to achieve required levels of efficiency, availability, and reliability, considering there is an increasing installation of this kind of machinery, both in onshore and offshore configuration. In this work, it has been applied a strategy that makes use of SCADA data with an increased sampling rate. The employed wind turbine in this study is based on an advanced benchmark, established by the National Renewable Energy Laboratory (NREL) of USA. Different types of faults on several actuators and sensed by certain installed sensors have been studied. The proposed strategy is based on a normality model by means of an autoencoder. As of this, faulty data are used for testing from which prediction errors were computed to detect if those raise a fault alert according to a defined metric which establishes a threshold on which a wind turbine works securely. The obtained results determine that the proposed strategy is successful since the model detects the considered three types of faults. Finally, even when prediction errors are small, the model is able to detect the faults without problems.


2021 ◽  
Vol 166 ◽  
pp. 120631
Author(s):  
Victor Chang ◽  
Yian Chen ◽  
Zuopeng (Justin) Zhang ◽  
Qianwen Ariel Xu ◽  
Patricia Baudier ◽  
...  

Author(s):  
Marcus Wiens ◽  
Sebastian Frahm ◽  
Philipp Thomas ◽  
Shoaib Kahn

AbstractRequirements for the design of wind turbines advance facing the challenges of a high content of renewable energy sources in the public grid. A high percentage of renewable energy weaken the grid and grid faults become more likely, which add additional loads on the wind turbine. Load calculations with aero-elastic models are standard for the design of wind turbines. Components of the electric system are usually roughly modeled in aero-elastic models and therefore the effect of detailed electrical models on the load calculations is unclear. A holistic wind turbine model is obtained, by combining an aero-elastic model and detailed electrical model into one co-simulation. The holistic model, representing a DFIG turbine is compared to a standard aero-elastic model for load calculations. It is shown that a detailed modelling of the electrical components e.g., generator, converter, and grid, have an influence on the results of load calculations. An analysis of low-voltage-ride-trough events during turbulent wind shows massive increase of loads on the drive train and effects the tower loads. Furthermore, the presented holistic model could be used to investigate different control approaches on the wind turbine dynamics and loads. This approach is applicable to the modelling of a holistic wind park to investigate interaction on the electrical level and simultaneously evaluate the loads on the wind turbine.


2016 ◽  
Vol 688 ◽  
pp. 44-49 ◽  
Author(s):  
Iveta Čabalová ◽  
František Kačík ◽  
Tereza Tribulová

Samples prepared from oak (Quercusrobur L.) wood were exposed to heat treatment at temperatures of 160, 180, 200 and 220 oC for 3, 6, 9 and 12 hours. In both untreated and thermally treated wood there were determined extractives and lignin by National Renewable Energy Laboratory (NREL) procedures, cellulose by Seifert's method, holocellulose according to Wise, hemicelluloses as difference between holocellulose and cellulose. Monosaccharides were determined by high performance liquid chromatography (NREL).The results show that hemicelluloses are less stable at thermal treatment than cellulose. The amounts of lignin and extractives rose by increasing both temperature and time of the treatment while the amounts of hemicelluloses decreased. Thermal treatment also resulted in significant decreases of the yields of non-glucosic saccharides. Degradation of carbohydrates can cause the deterioration of mechanical properties of wood.


Sign in / Sign up

Export Citation Format

Share Document