scholarly journals Diabetes Mellitus Prediction System Using Hybrid KPCA-GA-SVM Feature Selection Techniques

2021 ◽  
Vol 1767 (1) ◽  
pp. 012001
Author(s):  
M G Dinesh ◽  
D Prabha
2021 ◽  
Vol 25 (1) ◽  
pp. 21-34
Author(s):  
Rafael B. Pereira ◽  
Alexandre Plastino ◽  
Bianca Zadrozny ◽  
Luiz H.C. Merschmann

In many important application domains, such as text categorization, biomolecular analysis, scene or video classification and medical diagnosis, instances are naturally associated with more than one class label, giving rise to multi-label classification problems. This has led, in recent years, to a substantial amount of research in multi-label classification. More specifically, feature selection methods have been developed to allow the identification of relevant and informative features for multi-label classification. This work presents a new feature selection method based on the lazy feature selection paradigm and specific for the multi-label context. Experimental results show that the proposed technique is competitive when compared to multi-label feature selection techniques currently used in the literature, and is clearly more scalable, in a scenario where there is an increasing amount of data.


Healthcare ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 884
Author(s):  
Antonio García-Domínguez ◽  
Carlos E. Galván-Tejada ◽  
Ramón F. Brena ◽  
Antonio A. Aguileta ◽  
Jorge I. Galván-Tejada ◽  
...  

Children’s healthcare is a relevant issue, especially the prevention of domestic accidents, since it has even been defined as a global health problem. Children’s activity classification generally uses sensors embedded in children’s clothing, which can lead to erroneous measurements for possible damage or mishandling. Having a non-invasive data source for a children’s activity classification model provides reliability to the monitoring system where it is applied. This work proposes the use of environmental sound as a data source for the generation of children’s activity classification models, implementing feature selection methods and classification techniques based on Bayesian networks, focused on the recognition of potentially triggering activities of domestic accidents, applicable in child monitoring systems. Two feature selection techniques were used: the Akaike criterion and genetic algorithms. Likewise, models were generated using three classifiers: naive Bayes, semi-naive Bayes and tree-augmented naive Bayes. The generated models, combining the methods of feature selection and the classifiers used, present accuracy of greater than 97% for most of them, with which we can conclude the efficiency of the proposal of the present work in the recognition of potentially detonating activities of domestic accidents.


2021 ◽  
Vol 11 (4) ◽  
pp. 1742
Author(s):  
Ignacio Rodríguez-Rodríguez ◽  
José-Víctor Rodríguez ◽  
Wai Lok Woo ◽  
Bo Wei ◽  
Domingo-Javier Pardo-Quiles

Type 1 diabetes mellitus (DM1) is a metabolic disease derived from falls in pancreatic insulin production resulting in chronic hyperglycemia. DM1 subjects usually have to undertake a number of assessments of blood glucose levels every day, employing capillary glucometers for the monitoring of blood glucose dynamics. In recent years, advances in technology have allowed for the creation of revolutionary biosensors and continuous glucose monitoring (CGM) techniques. This has enabled the monitoring of a subject’s blood glucose level in real time. On the other hand, few attempts have been made to apply machine learning techniques to predicting glycaemia levels, but dealing with a database containing such a high level of variables is problematic. In this sense, to the best of the authors’ knowledge, the issues of proper feature selection (FS)—the stage before applying predictive algorithms—have not been subject to in-depth discussion and comparison in past research when it comes to forecasting glycaemia. Therefore, in order to assess how a proper FS stage could improve the accuracy of the glycaemia forecasted, this work has developed six FS techniques alongside four predictive algorithms, applying them to a full dataset of biomedical features related to glycaemia. These were harvested through a wide-ranging passive monitoring process involving 25 patients with DM1 in practical real-life scenarios. From the obtained results, we affirm that Random Forest (RF) as both predictive algorithm and FS strategy offers the best average performance (Root Median Square Error, RMSE = 18.54 mg/dL) throughout the 12 considered predictive horizons (up to 60 min in steps of 5 min), showing Support Vector Machines (SVM) to have the best accuracy as a forecasting algorithm when considering, in turn, the average of the six FS techniques applied (RMSE = 20.58 mg/dL).


Author(s):  
Md Arafatur Rahman ◽  
A. Taufiq Asyhari ◽  
Ong Wei Wen ◽  
Husnul Ajra ◽  
Yussuf Ahmed ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4821
Author(s):  
Rami Ahmad ◽  
Raniyah Wazirali ◽  
Qusay Bsoul ◽  
Tarik Abu-Ain ◽  
Waleed Abu-Ain

Wireless Sensor Networks (WSNs) continue to face two major challenges: energy and security. As a consequence, one of the WSN-related security tasks is to protect them from Denial of Service (DoS) and Distributed DoS (DDoS) attacks. Machine learning-based systems are the only viable option for these types of attacks, as traditional packet deep scan systems depend on open field inspection in transport layer security packets and the open field encryption trend. Moreover, network data traffic will become more complex due to increases in the amount of data transmitted between WSN nodes as a result of increasing usage in the future. Therefore, there is a need to use feature selection techniques with machine learning in order to determine which data in the DoS detection process are most important. This paper examined techniques for improving DoS anomalies detection along with power reservation in WSNs to balance them. A new clustering technique was introduced, called the CH_Rotations algorithm, to improve anomaly detection efficiency over a WSN’s lifetime. Furthermore, the use of feature selection techniques with machine learning algorithms in examining WSN node traffic and the effect of these techniques on the lifetime of WSNs was evaluated. The evaluation results showed that the Water Cycle (WC) feature selection displayed the best average performance accuracy of 2%, 5%, 3%, and 3% greater than Particle Swarm Optimization (PSO), Simulated Annealing (SA), Harmony Search (HS), and Genetic Algorithm (GA), respectively. Moreover, the WC with Decision Tree (DT) classifier showed 100% accuracy with only one feature. In addition, the CH_Rotations algorithm improved network lifetime by 30% compared to the standard LEACH protocol. Network lifetime using the WC + DT technique was reduced by 5% compared to other WC + DT-free scenarios.


Sign in / Sign up

Export Citation Format

Share Document