scholarly journals Precision electrical power sources calibration using electrical energy and frequency standards

2021 ◽  
Vol 1826 (1) ◽  
pp. 012098
Author(s):  
Marcelo Melo da Costa
Author(s):  
Archana Sudhakar Talhar ◽  
Sanjay B. Bodkhe

This paper gives a review of energy scenario in India and other countries. Today’s demand of the world is to minimize greenhouse gas emissions, during the production of electricity. Henceforth over the world, the production of electrical power is changing by introducing abundantly available renewable energy sources like sun and wind. But, because of the intermittent nature of sustainable power sources, the electrical power network faces many problems, during the transmission and distribution of electricity. For resolving these issues, Electrical Energy Storage (EES) is acknowledged as supporting technology. This paper discusses about the world electrical energy scenario with top renowned developed countries in power generation and consumption. Contribution of traditional power sources changed after the introduction of renewable energy sources like sun and wind. Worldwide Agencies are formed like International Energy Agency (IEA), The Central Intelligence Agency, (CIS) etc. The main aim of these agencies is to provide reliable, affordable and clean energy. This paper will discuss about the regulatory authority and government policies/incentives taken by different countries.  At the end of this paper, author focuses on obstacles in implementation, development and benefits of renewable energy.


2019 ◽  
Vol 889 ◽  
pp. 526-532
Author(s):  
Thai Viet Dang ◽  
Si Thong Dinh ◽  
Xuan Toi Bui

Currently, the world has a lot of research and practical application of intelligent building systems integrated with intelligent power systems. Because Vietnam is a country with potential for solar energy, the integrator of solar energy is being strongly developed. However, the research result of the optimization of electrical energy used by the intelligent type solar integration is rare. This paper presents the design and structure of the module of intelligent control and monitoring via wireless network integrated with the automatic solar concentration system. The system allows easy connection and operation of all electrical power sources including the dispersal solar power to ensure the efficient and lower power consumption. In addition, the solar cell system is applied the Maximum Power Point Tracking technique (MPPT), which helps to stabilize and improve the power generation efficiency of the PV panels. The test results on the module showed absorption performance of automatic solar-cell flat plate systems is raised by 20-30% and power consumption in small households reduced approximately 30%.


2013 ◽  
Vol 8 (1) ◽  
pp. 155892501300800
Author(s):  
François M. Guillot ◽  
Haskell W. Beckham ◽  
Johannes Leisen

In the past few years, the growing need for alternative power sources has generated considerable interest in the field of energy harvesting. A particularly exciting possibility within that field is the development of fabrics capable of harnessing mechanical energy and delivering electrical power to sensors and wearable devices. This study presents an evaluation of the electromechanical performance of hollow lead zirconate titanate (PZT) fibers as the basis for the construction of such fabrics. The fibers feature individual polymer claddings surrounding electrodes directly deposited onto both inside and outside ceramic surfaces. This configuration optimizes the amount of electrical energy available by placing the electrodes in direct contact with the surface of the material and by maximizing the active piezoelectric volume. Hollow fibers were electroded, encapsulated in a polymer cladding, poled and characterized in terms of their electromechanical properties. They were then glued to a vibrating cantilever beam equipped with a strain gauge, and their energy harvesting performance was measured. It was found that the fibers generated twice as much energy density as commercial state-of-the-art flexible composite sensors. Finally, the influence of the polymer cladding on the strain transmission to the fiber was evaluated. These fibers have the potential to be woven into fabrics that could harvest mechanical energy from the environment and could eventually be integrated into clothing.


2018 ◽  
Vol 17 (2) ◽  
pp. 117
Author(s):  
Tatjana Nikolić ◽  
Mile Stojčev ◽  
Goran Nikolić ◽  
Goran Jovanović

Batteries are the main source of energy for low-power electronics such as micro-electro mechanical systems (MEMS), wireless sensor networks, embedded devices for remote sensing and control, etc. With the limited capacity of finite power sources and the need for supplying energy for the lifetime of a system/device there is a requirement for self-powered devices. Using conventional batteries is not always good design solution because batteries require human intervention to replace them (very often in hard-accessible and harsh-environmental conditions). Therefore, acquiring the electrical power, by using an alternative source of energy that is needed to operate these devices is a major concern. The process of extracting energy from the surrounding environment and converting it into consumable electrical energy is known as energy harvesting or power scavenging. The energy harvesting sources can be used to increase the lifetime and capability of the devices by either replacing or augmenting the battery usage. There are various forms of energy that can be scavenged, like solar, mechanical, thermal, and electromagnetic. Nowadays, there is a big interest in the field of research related to energy harvesting. This paper represents a survey for identifying the sources of energy harvesting and describes the basic operation of principles of the most common energy harvester. As first, we present, in short, the conversion principles of single energy source harvesting systems and point to their benefits and limitations in their usage. After that, hybrid structures of energy harvesters which simultaneously combine scavenged power from different ambient sources (solar, thermoelectric, electromagnetic), with aim to support higher load at the output, are considered.


Author(s):  
Gunnar Tamm ◽  
J. Ledlie Klosky ◽  
Jacob Baxter ◽  
Luke Grant ◽  
Isaac Melnick ◽  
...  

Electrical power generation in austere settings, such as combat zones, places a heavy burden on the US Army; high costs in both dollars and lives lost require that every drop of fuel be used effectively and efficiently. In remote locations such as combat outposts (COPs) and small forward operating bases (FOBs) in Afghanistan, electrical power derived from the Army’s standard Advanced Medium Mobile Power Sources (AMMPS) generator is even used to heat water for showers and heat living spaces. This heating requires conversion of thermal energy to mechanical energy, which is then converted to electrical energy and back to heat. Thus, a significant fuel savings could be realized through the more efficient production of heat. A combined heat and power system is proposed; efficiency is increased by routing the generator exhaust through simple ducting to a standard gas hot water heater to produce hot water with waste heat. With funding from the U.S. Army Rapid Equipping Force, cadets and faculty at the United States Military Academy designed, built and tested a system for under $1,000 in parts which was readily coupled to a 5 kW AMMPS generator to produce hot shower water. Results indicate a possible fuel savings of 1500–2000 gallons per year, 20–35% increased fuel utility, and the ability to provide 10–20 five gallon showers during every 5 hours of operation of each 5 kW generator. At a fuel cost of $20–50 per gallon in the deployed environment, and considering the large inventory of deployed generators, the payback for the Army could be tremendous.


Author(s):  
Jahangir Rastegar ◽  
Richard Murray

This is a review of two patents relating to electrical power generation on-board gun-fired munitions. The devices harvest mechanical energy from the motion of the projectile (e.g. the axial firing acceleration), and then convert the energy from mechanical to electrical using novel mechanisms and materials such as piezoelectric elements. The devices are particularly important for several reasons. Firstly, the devices are inherently safe because the root source of the electrical energy is the motion of the projectile; therefore no electrical energy can be produced until after the projectile is fired. Second, the devices have a much longer shelf-life than competing electrical power sources such as batteries. Finally, the devices are simple, rugged, and reliable making them ideal for the harsh environment on-board gun-fired projectiles. In addition to presenting the general approach, the logical framework of the patented embodiments is presented, especially with respect to the types of motion used for harvesting and the challenges presented by the varied magnitudes of those motions in different weapon platforms.


2016 ◽  
Vol 2 (9) ◽  
pp. e1601114 ◽  
Author(s):  
Yan Fang ◽  
Victor V. Yashin ◽  
Steven P. Levitan ◽  
Anna C. Balazs

Driven by advances in materials and computer science, researchers are attempting to design systems where the computer and material are one and the same entity. Using theoretical and computational modeling, we design a hybrid material system that can autonomously transduce chemical, mechanical, and electrical energy to perform a computational task in a self-organized manner, without the need for external electrical power sources. Each unit in this system integrates a self-oscillating gel, which undergoes the Belousov-Zhabotinsky (BZ) reaction, with an overlaying piezoelectric (PZ) cantilever. The chemomechanical oscillations of the BZ gels deflect the PZ layer, which consequently generates a voltage across the material. When these BZ-PZ units are connected in series by electrical wires, the oscillations of these units become synchronized across the network, where the mode of synchronization depends on the polarity of the PZ. We show that the network of coupled, synchronizing BZ-PZ oscillators can perform pattern recognition. The “stored” patterns are set of polarities of the individual BZ-PZ units, and the “input” patterns are coded through the initial phase of the oscillations imposed on these units. The results of the modeling show that the input pattern closest to the stored pattern exhibits the fastest convergence time to stable synchronization behavior. In this way, networks of coupled BZ-PZ oscillators achieve pattern recognition. Further, we show that the convergence time to stable synchronization provides a robust measure of the degree of match between the input and stored patterns. Through these studies, we establish experimentally realizable design rules for creating “materials that compute.”


2015 ◽  
Vol 787 ◽  
pp. 782-786 ◽  
Author(s):  
R. Prakash ◽  
D. Christopher ◽  
K. Kumarrathinam

The prime objective of this paper is to present the details of a thermoelectric waste heat energy recovery system for automobiles, more specifically, the surface heat available in the silencer. The key is to directly convert the surface heat energy from automotive waste heat to electrical energy using a thermoelectric generator, which is then regulated by a DC–DC Cuk converter to charge a battery using maximum power point tracking. Hence, the electrical power stored in the battery can be maximized. Also the other face of the TEG will remain cold. Hence the skin burn out accidents can be avoided. The experimental results demonstrate that the proposed system can work well under different working conditions, and is promising for automotive industry.


2021 ◽  
Vol 17 (2) ◽  
pp. 204-211
Author(s):  
Raheel Jawad ◽  
Rawaa Jawad ◽  
Zahraa Salman

In the present-day decade, the world has regarded an expansion in the use of non-linear loads. These a lot draw harmonic non-sinusoidal currents and voltages in the connection factor with the utility and distribute them with the useful resource of the overall performance of it. The propagation of these currents and voltages into the grids have an effect on the electricity constructions in addition to the one of various client equipment. As a result, the electrical strength notable has come to be critical trouble for each client and distributor of electrical power. Active electrical electricity filters have been proposed as environment splendid gear for electrical power pinnacle notch enchantment and reactive electrical strength compensation. Active Power Filters (APFs) have Flipped out to be a possible wish in mitigating the harmonics and reactive electrical electricity compensation in single-phase and three-phase AC electrical energy networks with Non-Linear Loads (NLLs). Conventionally, this paper applied Ant Colony Algorithm(ACO) for tuning PI and reduce Total Harmonic Distortion (THD). The result show reduces THD at 2.33%.


2019 ◽  
Vol 16 (03) ◽  
pp. 1950027
Author(s):  
Surapree Maolikul ◽  
Thira Chavarnakul ◽  
Somchai Kiatgamolchai

Thermoelectrics, an energy-conversion technology, has been developed for its potential to support portable electronics with an innovative power source. Primarily focusing on the metropolitan market in Thailand, the study, thus, aimed at the market insight into portable electronics users’ characteristics and opinions of thermoelectric-generator (TEG) technology commercialization. The business research was conducted to analyze their behaviors for power-supply lacking problems, encountering heat or cold sources, purchasing decision for a TEG-based charger and key decision factors. For practical applications, an innovative TEG-based charger should be more flexible by harnessing various heat or cold sources from ambient situations to generate electrical power.


Sign in / Sign up

Export Citation Format

Share Document