scholarly journals Evaluation of contact angle of water proof coated fabric made from melt-blown polyester non-woven and acrylic polymeric materials

2021 ◽  
Vol 1913 (1) ◽  
pp. 012058
Author(s):  
G B Ramaiah ◽  
S Mekonnen ◽  
E Solomon ◽  
B Melese ◽  
K P Rao
2021 ◽  
Vol 2114 (1) ◽  
pp. 012031
Author(s):  
R Mohammed ◽  
H Jawad ◽  
A. Al-Zubiedy

Abstract The use of polymeric blended nanofibres is one of the recent applications in the food and liquid packaging. The current research aims to prepare the nanofibers coatings from the blend of polymeric materials via the electro spinning technique 0.08 weight ratio concentration of polyvinyl alcohol (PVA) dissolved in water, as well as, (0.2 weight ratio concentration ) of poly vinyl pyrrolidone (PVP) were used to obtain different volume proportions of (PVA:PVP) solutions include (100:0, 80:20,70:30, 50:50, 20:80, and 0:100). The electro spinning system was organized with pumping conditions (20 kV for the applied voltage, 20 cm pumping distance, 1ml/hr pumping rate) and a needle diameter with 0.4mm diameter. The properties of the polymeric solutions involve (viscosity, surface tension, and electrical conductivity of the liquid) were examined. A scanning electron microscope technique was used to study the surface properties of the prepared films, and the contact angle via the contact angle analyzer was examined. The results of a scanning electron microscope proved that the diameter of the nano fibers increases with increasing the concentration and viscosity of solutions and decreasing its electrical conductivity. Also, the results of the contact angle analyzer showed an increase the hydrophilic property via increasing percentage of polyvinylpyrrolidone.


2012 ◽  
Vol 509 ◽  
pp. 135-137 ◽  
Author(s):  
Shiun Wei Chang ◽  
Chun Ming Chen ◽  
Ju Liang He

Polymeric materials have been widely used as flexible substrates and housing parts of modern electronic wares. However, their low hardness and scratch resistance must be improved by additional protective surface coatings, which require not only mechanical durability but also additional functions such as surface hydrophobicity, oleophobicity as well as anti-fingerprint performance. To satisfy these, a power modulated plasma polymerization technique was designed to synthesize a transparent compositional gradient coating on polycarbonate (PC) substrate. Firstly, a constant flow rate of tetramethyldisiloxane (TMDSO) precursor was introduced where higher plasma power was employed to deposit a hard H-C-Si-O bottom layer. The plasma power was then decreased meanwhile admitting increased fluoromethane (CF4) gas flow as the second precursor to obtain a top layer with low surface energy. The hard bottom layer acts as a strong mechanical support and the top layer gives additional hydrophobicity and oleophobicity. Ultimately, the coating shows that a pencil hardness of 3H and Scotch-tape adhesion of 5B improves its protective function. A water contact angle of 105° and oil contact angle of 31.7° can be obtained. The coated specimen remains an optical transparency of 90% close to bare PC material. Comparing with commercialized screen protectors, the developed coating shows superior protective and anti-fingerprint performance.


2019 ◽  
Vol 11 (2) ◽  
pp. 127
Author(s):  
Mumuni Amadu ◽  
Adango Miadonye

The solid-liquid interfacial tension is a fundamental parameter in areas of wettability pertaining to adhesive bonds and petroleum engineering practice. In wettability issues related to surface functionalized polymeric materials design to achieve specific adhesive properties, the solid-liquid interfacial tension can be pH dependent due to amphoteric behavior. In this paper, we have used the theory of pH dependent surface charging and the 2-pk model as well as the site binding model of the electric double layer theory to derive a pH dependent solid-liquid interfacial tension equation. Following the fundamental relationship between solid-liquid interfacial tension and contact angle in light of Young’s equation, we have extended the theoretical basis of the derivation. Consequently, we have also derived a pH dependent cosine of the thermodynamic contact angle. Both equations give satisfactory explanations for observed experimental data available in the literature.


2021 ◽  
Author(s):  
Gurumurthy B. Ramaiah ◽  
Seblework Mekonnen ◽  
Eshetu Solomon ◽  
Parashuram S. Chilla ◽  
Ashok. P. Ari

2005 ◽  
Vol 2005 (1) ◽  
pp. 837-840 ◽  
Author(s):  
Victoria A. Broje ◽  
Arturo A. Keller

ABSTRACT A significant amount of effort is being devoted by scientists and industry in order to increase the efficiency of oil spill recovery equipment as it determines the impact of oil spills on coastal ecosystems as well as the time and cost of cleanup operations. One way to increase the efficiency of adhesion skimmers is to replace traditional recovery materials with polymeric materials that have the highest affinity for oil. The research conducted at the University of California Santa Barbara has shown that modern scientific equipment such as a Dynamic Contact Angle Analyzer can be used for evaluation of candidate materials and selection of materials that can be most efficiently used for oil spill cleanup. The study found that the contact angle formed between oil and test surface can be used to characterize the affinity of material to oil. The contact angle correlates well with the mass of recovered oil. For a given oil, the lower the contact angle the higher the recovered mass. The study also showed that surface roughness and oil composition have a significant effect on the results of the adhesion tests. Higher roughness results in lower contact angle and larger recovered mass, for the same oil-polymer pair.


2020 ◽  
Vol 1012 ◽  
pp. 57-61
Author(s):  
Hortência Nathânia Silva Câmara ◽  
Francisco Leonardo Gomes de Menezes ◽  
Ricardo Henrique de Lima Leite ◽  
Edna Maria Mendes Aroucha ◽  
Francisco Klebson Gomes dos Santos

The use of natural polymeric materials has been growing notably in order to replace packaging from non-renewable sources. In this sense, cassava starch is a very promising natural polymer for this purpose due to its ease of production, the low cost, besides being biodegradable. However, cassava starch biofilms when dried have a brittle character requiring the addition of a plasticizer. Thus, biofilms were synthesized based on cassava starch (3%) with different percentages of glycerol (5%, 10%, 20%, 40% and 50%) to evaluate changes in physic-chemical and mechanical properties. The results indicate that the increase in percentage of glycerol contributed directly to the increase of water vapor permeability while decreases the contact angle and modulus of elasticity of cassava starch films.


2021 ◽  
Author(s):  
Megan Catterton ◽  
Alyssa N. Montalbine ◽  
Rebecca Pompano

With the microfluidics community embracing 3D resin printing as a rapid fabrication method, controlling surface chemistry has emerged as a new challenge. Fluorination of 3D printed surfaces is highly desirable in many applications due to chemical inertness, low friction coefficients, anti-fouling properties and the potential for selective hydrophobic patterning. Despite sporadic reports, silanization methods have not been optimized for covalent bonding with polymeric resins. As a case study, we tested the silanization of a commercially available (meth)acrylate-based resin (BV-007A) with a fluoroalkyl trichlorosilane. Interestingly, plasma oxidation was unnecessary for silanization of this resin, and indeed was ineffective. Solvent-based deposition in a fluorinated oil (FC-40) generated significantly higher contact angles than deposition in ethanol or gas-phase deposition, yielding hydrophobic surfaces with contact angle > 110˚ under optimized conditions. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy indicated that the increase in contact angle correlated with consumption of a carbonyl moiety, suggesting covalent bonding of the silane without plasma oxidation. Consistent with a covalent bond, the silanization was resistant to mechanical damage and hydrolysis in methanol, and was stable over long-term storage. When tested on a suite of photocrosslinkable resins, this silanization protocol generated highly hydrophobic surfaces (contact angle > 110˚) on three resins and moderate hydrophobicity (90 – 100˚) on the remainder. Selective patterning of hydrophobic regions in an open 3D-printed microchannel was possible in combination with simple masking techniques. Thus, this facile fluorination strategy is expected to be applicable for resin-printed materials in a variety of contexts including micropatterning and multiphase microfluidics.


2021 ◽  
Author(s):  
Megan Catterton ◽  
Alyssa N. Montalbine ◽  
Rebecca Pompano

With the microfluidics community embracing 3D resin printing as a rapid fabrication method, controlling surface chemistry has emerged as a new challenge. Fluorination of 3D printed surfaces is highly desirable in many applications due to chemical inertness, low friction coefficients, anti-fouling properties and the potential for selective hydrophobic patterning. Despite sporadic reports, silanization methods have not been optimized for covalent bonding with polymeric resins. As a case study, we tested the silanization of a commercially available (meth)acrylate-based resin (BV-007A) with a fluoroalkyl trichlorosilane. Interestingly, plasma oxidation was unnecessary for silanization of this resin, and indeed was ineffective. Solvent-based deposition in a fluorinated oil (FC-40) generated significantly higher contact angles than deposition in ethanol or gas-phase deposition, yielding hydrophobic surfaces with contact angle > 110˚ under optimized conditions. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy indicated that the increase in contact angle correlated with consumption of a carbonyl moiety, suggesting covalent bonding of the silane without plasma oxidation. Consistent with a covalent bond, the silanization was resistant to mechanical damage and hydrolysis in methanol, and was stable over long-term storage. When tested on a suite of photocrosslinkable resins, this silanization protocol generated highly hydrophobic surfaces (contact angle > 110˚) on three resins and moderate hydrophobicity (90 – 100˚) on the remainder. Selective patterning of hydrophobic regions in an open 3D-printed microchannel was possible in combination with simple masking techniques. Thus, this facile fluorination strategy is expected to be applicable for resin-printed materials in a variety of contexts including micropatterning and multiphase microfluidics.


Author(s):  
Vygandas Rutkunas ◽  
Rokas Borusevicius ◽  
Dominyka Liaudanskaite ◽  
Urte Jasinskyte ◽  
Saulius Drukteinis ◽  
...  

Dental implant abutment and prosthetic materials, their surface treatment, and cleaning modalities are important factors for the formation of a peri-implant soft tissue seal and long-term stability of bone around the implant. This study aimed to investigate the influence of a polymeric material surface cleaning method on the surface roughness, water contact angle, and human gingival fibroblasts (HGF) proliferation. Polymeric materials tested: two types of milled polymethylmethacrylate (PMMA-Ker and PMMA-Bre), three-dimensionally (3D) printed polymethylmethacrylate (PMMA-3D), polyetheretherketone (PEEK), and polyetherketoneketone (PEKK). Titanium (Ti) and zirconia oxide ceramics (ZrO-HT) were used as positive controls. A conventional surface cleaning protocol (CCP) was compared to a multi-step research cleaning method (RCP). Application of the RCP method allowed to reduce Sa values in all groups from 0.14–0.28 µm to 0.08–0.17 µm (p < 0.05 in PMMA-Ker and PEEK groups). Moreover, the water contact angle increased in all groups from 74–91° to 83–101° (p < 0.05 in the PEKK group), except ZrO-HT—it was reduced from 98.7 ± 4.5° to 69.9 ± 6.4° (p < 0.05). CCP resulted in higher variability of HGF viability after 48 and 72 h. RCP application led to higher HGF viability in PMMA-3D and PEKK groups after 48 h, but lower for the PMMA-Ker group (p < 0.05). After 72 h, no significant differences in HGF viability between both cleaning methods were observed. It can be concluded that the cleaning method of the polymeric materials affected surface roughness, contact angle, and HGF viability at 48 h.


Sign in / Sign up

Export Citation Format

Share Document