A Numerical Study of Heat Transfer Enhancement by a Rectangular Cylinder Placed Parallel to the Heated Wall

2019 ◽  
Vol 141 (7) ◽  
Author(s):  
J. F. Derakhshandeh ◽  
Md. Mahbub Alam

The flow around a rectangular cylinder mounted in the vicinity of a hot wall is numerically studied at a Reynolds number of 200. While the cylinder chord-to-height ratio C/W is varied from 2 to 10, the gap distance G from the wall to the cylinder is changed from 0.25 to 6.25. The focus of this study is given on the dependence of G/W and C/W on the heat transfer from the wall and associated physics. The variation in the Strouhal number is presented as a function of C/W. It is observed that the effect of G/W on the vortex dynamics and heat transfer is much more than that of C/W. Based on the dependence of the vortex dynamics and heat transfer on G/W, we have identified four distinct flows: no vortex street flow (G/W < 0.75), single-row vortex street flow (0.75 ≤ G/W ≤ 1.25), inverted two-row vortex street flow (1.25 < G/W ≤ 2.5), and two-row vortex street flow (G/W > 2.5). At the single-row vortex street flow, the two opposite-sign vortices appearing in a jetlike flow carry heat from the wall to the wake and then to the freestream. The maximum heat transfer is achieved at the single-row vortex street flow and 8% increase occurs at C/W = 2, G/W = 0.75–1.25.

2008 ◽  
Vol 130 (2) ◽  
Author(s):  
El Hassan Ridouane ◽  
Antonio Campo

A numerical study was conducted to investigate convective heat transfer and laminar fluid flow in the developing region of two-dimensional parallel-plate channels with arrays of transverse hemicircular grooves cut into the plates. Air with uniform velocity and temperature enters the channel whose plates are at a uniform temperature. The finite-volume method is used to perform the computational analysis accounting for the traditional second-order-accurate QUICK and SIMPLE schemes. Steady-state results are presented for parallel-plate channels with and without hemicircular grooves for comparison purposes. The study revolves around four controlling parameters: (1) the height of the channel, (2) the relative groove depth, (3) the number of grooves, and (4) the Reynolds number. A prototypical 120‐cm-long channel contains two series of 3, 6, and 12 transverse grooves with four relative groove depths δ∕D of 0.125, 0.25, 0.375, and 0.5. Three ratios of channel height to groove print diameter H∕D of 0.5, 1, and 2 are employed. Computations are performed for Reynolds numbers based on the hydraulic diameter ranging from 1000 to 2500. It is found that the grooves enhance local heat transfer relative to a flat passage at locations near their downstream edge. The maximum heat transfer enhancement occurs at an optimal depth of the grooves. For purposes of engineering design, generalized correlation equations for the Nusselt number in terms of the pertinent Re, δ∕D, and the number of grooves N were constructed using nonlinear regression theory.


Author(s):  
L. Almanza-Huerta ◽  
A. Hernandez-Guerrero ◽  
M. Krarti ◽  
J. M. Luna

The present paper provides a numerical study of a parametric analysis of a bayonet tube with a special type of extended surface during the laminar-turbulent transition. The working internal fluid is air. Attention is focused on the heat transfer characteristics of the tube. The results constitute a systematic investigation of the effect of the extended surface located along the annulus of the bayonet on the overall heat transfer rate. The effects of the variation of some parameters related to the extended surface aiming to attain the maximum heat transfer with the minimum pressure drop are discussed. Comparisons between designs with and without extended surface are also made.


2011 ◽  
Vol 110-116 ◽  
pp. 1613-1618 ◽  
Author(s):  
S. Kapoor ◽  
P. Bera

A comprehensive numerical study on the natural convection in a hydrodynamically anisotropic as well as isotropic porous enclosure is presented, flow is induced by non uniform sinusoidal heating of the right wall of the enclosure. The principal directions of the permeability tensor has been taken oblique to the gravity vector. The spectral Element method has been adopted to solve numerically the governing differential equations by using the vorticity-stream-function approach. The results are presented in terms of stream function, temperature profile and Nusselt number. The result show that the maximum heat transfer takes place at y = 1.5 when N is odd.. Also, increasing media permeability, by changing K* = 1 to K* = 0.2, increases heat transfer rate at below and above right corner of the enclosure. Furthermore, for the all values of N, profiles of local Nusselt number (Nuy) in isotropic as well as anisotropic media are similar, but for even values of N differ slightly at N = 2.. In particular the present analysis shows that, different periodicity (N) of temperature boundary condition has the significant effect on the flow pattern and consequently on the local heat transfer phenomena.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012026
Author(s):  
A V Barsukov ◽  
V V Terekhov ◽  
V I Terekhov

Abstract The results of numerical simulation of the separation flow in matrix channels by the RANS method are presented. The simulation is performed at the Reynolds number Re = 12600, determined by the mass-average velocity and the height of the channel. The distribution of the local Nusselt number is obtained for various Reynolds numbers in the range of 5÷15⋅103 and several rib angles. It is shown that the temperature distribution on the surface is highly nonuniform; in particular, the maximum heat transfer value is observed near the upper edge facets, in the vicinity of which the greatest velocity gradient is observed.


1980 ◽  
Vol 102 (2) ◽  
pp. 215-220 ◽  
Author(s):  
E. M. Sparrow ◽  
C. Prakash

An analysis has been performed to determine whether, in natural convection, a staggered array of discrete vertical plates yields enhanced heat transfer compared with an array of continuous parallel vertical plates having the same surface area. The heat transfer results were obtained by numerically solving the equations of mass, momentum, and energy for the two types of configurations. It was found that the use of discrete plates gives rise to heat transfer enhancement when the parameter (Dh/H)Ra > ∼2 × 103 (Dh = hydraulic diameter of flow passage, H = overall system height). The extent of the enhancement is increased by use of numerous shorter plates, by larger transverse interplate spacing, and by relatively short system heights. For the parameter ranges investigated, the maximum heat transfer enhancement, relative to the parallel plate case, was a factor of two. The general degree of enhancement compares favorably with that which has been obtained in forced convection systems.


2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Amnart Boonloi ◽  
Withada Jedsadaratanachai

Numerical assessments in the square channel heat exchanger installed with various parameters of V-orifices are presented. The V-orifice is installed in the heat exchanger channel with gap spacing between the upper-lower edges of the orifice and the channel wall. The purposes of the design are to reduce the pressure loss, increase the vortex strength, and increase the turbulent mixing of the flow. The influence of the blockage ratio and V-orifice arrangement is investigated. The blockage ratio, b/H, of the V-orifice is varied in the range 0.05–0.30. The V-tip of the V-orifice pointing downstream (V-downstream) is compared with the V-tip pointing upstream (V-upstream) by both flow and heat transfer. The numerical results are reported in terms of flow visualization and heat transfer pattern in the test section. The thermal performance assessments in terms of Nusselt number, friction factor, and thermal enhancement factor are also concluded. The numerical results reveal that the maximum heat transfer enhancement is found to be around 26.13 times higher than the smooth channel, while the optimum TEF is around 3.2. The suggested gap spacing for the present configuration of the V-orifice channel is around 5–10%.


Author(s):  
Sunil Patil ◽  
Teddy Sedalor ◽  
Danesh Tafti ◽  
Srinath Ekkad ◽  
Yong Kim ◽  
...  

Modern dry low emissions (DLE) combustors are characterized by highly swirling and expanding flows that makes the convective heat load on the gas side difficult to predict and estimate. A coupled experimental–numerical study of swirling flow inside a DLE annular combustor model is used to determine the distribution of heat transfer on the liner walls. Three different Reynolds numbers are investigated in the range of 210,000–840,000 with a characteristic swirl number of 0.98. The maximum heat transfer coefficient enhancement ratio decreased from 6 to 3.6 as the flow Reynolds number increased from 210,000 to 840,000. This is attributed to a reduction in the normalized turbulent kinetic energy in the impinging shear layer, which is strongly dependent on the swirl number that remains constant at 0.98 for the Reynolds number range investigated. The location of peak heat transfer did not change with the increase in Reynolds number since the flow structures in the combustors did not change with Reynolds number. Results also showed that the heat transfer distributions in the annulus have slightly different characteristics for the concave and convex walls. A modified swirl number accounting for the step expansion ratio is defined to facilitate comparison between the heat transfer characteristics in the annular combustor with previous work in a can combustor. A higher modified swirl number in the annular combustor resulted in higher heat transfer augmentation and a slower decay with Reynolds number.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zoubida Haddad ◽  
Farida Iachachene ◽  
Eiyad Abu-Nada ◽  
Ioan Pop

AbstractThis paper presents a detailed comparison between the latent functionally thermal fluids (LFTFs) and nanofluids in terms of heat transfer enhancement. The problem used to carry the comparison is natural convection in a differentially heated cavity where LFTFs and nanofluids are considered the working fluids. The nanofluid mixture consists of Al2O3 nanoparticles and water, whereas the LFTF mixture consists of a suspension of nanoencapsulated phase change material (NEPCMs) in water. The thermophysical properties of the LFTFs are derived from available experimental data in literature. The NEPCMs consist of n-nonadecane as PCM and poly(styrene-co-methacrylic acid) as shell material for the encapsulation. Finite volume method is used to solve the governing equations of the LFTFs and the nanofluid. The computations covered a wide range of Rayleigh number, 104 ≤ Ra ≤ 107, and nanoparticle volume fraction ranging between 0 and 1.69%. It was found that the LFTFs give substantial heat transfer enhancement compared to nanofluids, where the maximum heat transfer enhancement of 13% was observed over nanofluids. Though the thermal conductivity of LFTFs was 15 times smaller than that of the base fluid, a significant enhancement in thermal conductivity was observed. This enhancement was attributed to the high latent heat of fusion of the LFTFs which increased the energy transport within the cavity and accordingly the thermal conductivity of the LFTFs.


2012 ◽  
Vol 516-517 ◽  
pp. 249-252 ◽  
Author(s):  
Bing Chang Yang ◽  
Dong Xu Jin

Heat transfer enhancement by pulsating flow in a triangular grooved channel has been experimentally investigated. Effects of Reynolds number Re, Strouhal number St, pulsation amplitude A on the heat transfer enhancement were studied. The experimental results show that, the pulsating flow can significantly enhance heat transfer compared to the steady flow case, for instance, an enhancement of 115% is achieved at Re=400, A=0.5 and St=0.3. There exists an optimal Strouhal number corresponding to the maximum heat transfer enhancement factor. The heat transfer enhancement factor increases with the increase of Reynolds number and pulsation amplitude.


2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Changwoo Kang ◽  
Kyung-Soo Yang

The present study aims at explaining why heat transfer is enhanced in turbulent ribbed-pipe flow, based on our previous large eddy simulation (LES) database (Kang and Yang, 2016, “Characterization of Turbulent Heat Transfer in Ribbed Pipe Flow,” ASME J. Heat Transfer, 138(4), p. 041901) obtained for Re = 24,000, Pr = 0.71, pitch ratio (PR) = 2, 4, 6, 8, 10, and 18, and blockage ratio (BR) = 0.0625. Here, the bulk velocity and the pipe diameter were used as the velocity and length scales, respectively. The ribs were implemented in the cylindrical coordinate system by means of an immersed boundary method. In particular, we focus on the cases of PR ≥ 4 for which heat transfer turns out to be significantly enhanced. Instantaneous flow fields reveal that the vortices shed from the ribs are entrained into the main recirculating region behind the ribs, inducing velocity fluctuations in the vicinity of the pipe wall. In order to identify the turbulence structures responsible for heat transfer enhancement in turbulent ribbed-pipe flow, various correlations among the fluctuations of temperature and velocity components have been computed and analyzed. The cross-correlation coefficient and joint probability density distributions of velocity and temperature fluctuations, obtained for PR = 10, confirm that temperature fluctuation is highly correlated with velocity-component fluctuation, but which component depends upon the axial location of interest between two neighboring ribs. Furthermore, it was found via the octant analysis performed for the same PR that at the axial point of the maximum heat transfer rate, O3 (cold wallward interaction) and O5 (hot outward interaction) events most contribute to turbulent heat flux and most frequently occur.


Sign in / Sign up

Export Citation Format

Share Document