scholarly journals Investigation of photoluminescence kinetics CuInS2/ZnS quantum dots

2021 ◽  
Vol 2058 (1) ◽  
pp. 012007
Author(s):  
A A Lazareva ◽  
I A Reznik ◽  
A Yu Dubavik ◽  
A V Veniaminov ◽  
A O Orlova

Abstract The kinetics of photoluminescence of CuInS2/ZnS quantum dots at room temperature has been studied. We show that the parameters of the photoluminescence band of our quantum dots, i.e. its position and FWHM, do not depend on the delay time after the excitation laser pulse. These may suggest the spectral diffusion of photoluminescence of CuInS2/ZnS quantum dots due to hole localization at different Cu sites.

Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4464 ◽  
Author(s):  
Mihai Boni ◽  
Ionut Relu Andrei ◽  
Mihail Lucian Pascu ◽  
Angela Staicu

Fluorescence and lasing emission that are produced separately in time during excitation laser pulse for an mm-sized Rhodamine 6G dye-water droplet are reported. The droplet acts as a quasi-spherical closed optical resonator and due to multiple internal reflections, the resonant amplified emission is delayed with respect to fluorescence emission. Measurements of the temporal evolution of the droplet’s emission were performed by varying the signal acquisition gate width and gate delay with respect to the pumping pulse. The droplet emission spectra are structured in two bands which appear one after the other in time: first, the fluorescence emission band which follows pumping laser pulse time shape and then a second band, the lasing band, placed at shorter wavelengths and formed in time after the peak of the pumping laser pulse intensity, on the pulse tail. The lasing threshold pumping intensity is much lower than those for typical dye lasers.


2000 ◽  
Vol 5 (S1) ◽  
pp. 803-809
Author(s):  
Milan Pophristic ◽  
Frederick H. Long ◽  
Chuong Tran ◽  
Ian T. Ferguson

We have used time-resolved photoluminescence (PL), with 400 nm (3.1 eV) excitation, to examine InxGa1−xN/GaN light-emitting diodes (LEDs) before the final stages of processing at room temperature. We have found dramatic differences in the time-resolved kinetics between dim, bright and super bright LED devices. The lifetime of the emission for dim LEDs is quite short, 110 ± 20 ps at photoluminescence (PL) maximum, and the kinetics are not dependent upon wavelength. This lifetime is short compared to bright and super bright LEDs, which we have examined under similar conditions. The kinetics of bright and super bright LEDs are clearly wavelength dependent, highly non-exponential, and are on the nanosecond time scale (lifetimes are in order of 1 ns for bright and 10 ns for super bright LED at the PL max). The non-exponential PL kinetics can be described by a stretched exponential function, indicating significant disorder in the material. Typical values for β, the stretching coefficient, are 0.45 − 0.6 for bright LEDs, at the PL maxima at room temperature. We attribute this disorder to indium alloy fluctuations.From analysis of the stretched exponential kinetics we estimate the potential fluctuations to be approximately 75 meV in the super bright LED. Assuming a hopping mechanism, the average distance between indium quantum dots in the super bright LED is estimated to be 20 Å.


1996 ◽  
Vol 452 ◽  
Author(s):  
S. A. Empedocles ◽  
D. J. Norris ◽  
M. G. Bawendi

AbstractWe collect and spectrally resolve photoluminescence from single CdSe nanocrystallite quantum dots. By eliminating spectral inhomogeneities, we reveal resolution limited linewidths < 120μev at 10K. These lines are more than fifty times narrower than what has previously been reported using ensemble measurements. Light driven spectral diffusion is seen as a form of power broadening and may be the cause of surprisingly broad linewidths at room temperature. In addition, we see no evidence of excited state emission or coupling to acoustic phonons.


2015 ◽  
Vol 106 (4) ◽  
pp. 042102 ◽  
Author(s):  
Leo Bonato ◽  
Elisa M. Sala ◽  
Gernot Stracke ◽  
Tobias Nowozin ◽  
André Strittmatter ◽  
...  

1999 ◽  
Vol 595 ◽  
Author(s):  
Milan Pophristic ◽  
Frederick H. Long ◽  
Chuong Tran ◽  
Ian T. Ferguson

AbstractWe have used time-resolved photoluminescence (PL), with 400 nm (3.1 eV) excitation, to examine InxGa1−xN/GaN light-emitting diodes (LEDs) before the final stages of processing at room temperature. We have found dramatic differences in the time-resolved kinetics between dim, bright and super bright LED devices. The lifetime of the emission for dim LEDs is quite short, 110 ± 20 ps at photoluminescence (PL) maximum, and the kinetics are not dependent upon wavelength. This lifetime is short compared to bright and super bright LEDs, which we have examined under similar conditions. The kinetics of bright and super bright LEDs are clearly wavelength dependent, highly non-exponential, and are on the nanosecond time scale (lifetimes are in order of 1 ns for bright and 10 ns for super bright LED at the PL max). The non-exponential PL kinetics can be described by a stretched exponential function, indicating significant disorder in the material. Typical values for β, the stretching coefficient, are 0.45 – 0.6 for bright LEDs, at the PL maxima at room temperature. We attribute this disorder to indium alloy fluctuations.From analysis of the stretched exponential kinetics we estimate the potential fluctuations to be approximately 75 meV in the super bright LED. Assuming a hopping mechanism, the average distance between indium quantum dots in the super bright LED is estimated to be 20 Å.


Author(s):  
Harry A. Atwater ◽  
C.M. Yang ◽  
K.V. Shcheglov

Studies of the initial stages of nucleation of silicon and germanium have yielded insights that point the way to achievement of engineering control over crystal size evolution at the nanometer scale. In addition to their importance in understanding fundamental issues in nucleation, these studies are relevant to efforts to (i) control the size distributions of silicon and germanium “quantum dots𠇍, which will in turn enable control of the optical properties of these materials, (ii) and control the kinetics of crystallization of amorphous silicon and germanium films on amorphous insulating substrates so as to, e.g., produce crystalline grains of essentially arbitrary size.Ge quantum dot nanocrystals with average sizes between 2 nm and 9 nm were formed by room temperature ion implantation into SiO2, followed by precipitation during thermal anneals at temperatures between 30°C and 1200°C[1]. Surprisingly, it was found that Ge nanocrystal nucleation occurs at room temperature as shown in Fig. 1, and that subsequent microstructural evolution occurred via coarsening of the initial distribution.


1977 ◽  
Vol 16 (01) ◽  
pp. 30-35 ◽  
Author(s):  
N. Agha ◽  
R. B. R. Persson

SummaryGelchromatography column scanning has been used to study the fractions of 99mTc-pertechnetate, 99mTcchelate and reduced hydrolyzed 99mTc in preparations of 99mTc-EDTA(Sn) and 99mTc-DTPA(Sn). The labelling yield of 99mTc-EDTA(Sn) chelate was as high as 90—95% when 100 μmol EDTA · H4 and 0.5 (Amol SnCl2 was incubated with 10 ml 99mTceluate for 30—60 min at room temperature. The study of the influence of the pH-value on the fraction of 99mTc-EDTA shows that pH 2.8—2.9 gave the best labelling yield. In a comparative study of the labelling kinetics of 99mTc-EDTA(Sn) and 99mTc- DTPA(Sn) at different temperatures (7, 22 and 37°C), no significant influence on the reduction step was found. The rate constant for complex formation, however, increased more rapidly with increased temperature for 99mTc-DTPA(Sn). At room temperature only a few minutes was required to achieve a high labelling yield with 99mTc-DTPA(Sn) whereas about 60 min was required for 99mTc-EDTA(Sn). Comparative biokinetic studies in rabbits showed that the maximum activity in kidneys is achieved after 12 min with 99mTc-EDTA(Sn) but already after 6 min with 99mTc-DTPA(Sn). The long-term disappearance of 99mTc-DTPA(Sn) from the kidneys is about five times faster than that for 99mTc-EDTA(Sn).


2009 ◽  
Vol 59 (12) ◽  
Author(s):  
Mihai Contineanu ◽  
iulia Contineanu ◽  
Ana Neacsu ◽  
Stefan Perisanu

The radiolysis of the isomers L-, D- and DL- of the aspartic acid, in solid polycrystalline state, was investigated at room temperature. The analysis of their ESR spectra indicated the formation of at least two radicalic entities. The radical, identified as R3, resulting from the deamination of the acid, exhibits the highest concentration and thermal resistance. Possible mechanisms of formation of three radical species are suggested, based also on literature data. The kinetics of the disappearance of radical R3 indicated a complex mechanism. Three possible variants were suggested for this mechanism.


1992 ◽  
Vol 57 (11) ◽  
pp. 2302-2308
Author(s):  
Karel Mocek ◽  
Erich Lippert ◽  
Emerich Erdös

The kinetics of the reaction of solid sodium carbonate with sulfur dioxide depends on the microstructure of the solid, which in turn is affected by the way and conditions of its preparation. The active form, analogous to that obtained by thermal decomposition of NaHCO3, emerges from the dehydration of Na2CO3 . 10 H2O in a vacuum or its weathering in air at room temperature. The two active forms are porous and have approximately the same specific surface area. Partial hydration of the active Na2CO3 in air at room temperature followed by thermal dehydration does not bring about a significant decrease in reactivity. On the other hand, if the preparation of anhydrous Na2CO3 involves, partly or completely, the liquid phase, the reactivity of the product is substantially lower.


Sign in / Sign up

Export Citation Format

Share Document