scholarly journals A Critical Study on Computation of Cutting Forces in Metal Cutting

2021 ◽  
Vol 2070 (1) ◽  
pp. 012166
Author(s):  
Dillip Kumar Mohanta ◽  
Biswajyoti Pani ◽  
Bidyadhar Sahoo ◽  
A. M. Mohanty

Abstract Tool behavior in metal cutting is inevitable since they are typically required to produce components with high precision. This would have a profound impact on efficiency and costs of machining. The cutting forces involved at chip tool interface and the surface finish of the machined surfaces are the two major facets to gauge the performance of tool. The prediction by a statistical model, and the experimental values recorded using various sensors especially dynamometers are different approaches to critically analyze the cutting forces. Many researchers use to extensively practice these methodologies for their research activity. The aim of current research is to critically analyze & summarize approaches i.e., experimental/predictive available for gauging the cutting forces with user suggestion.

2021 ◽  
Vol 9 ◽  
Author(s):  
Anis Fatima ◽  
◽  
Muhammad Wasif ◽  
Muhammad Omer Mumtaz ◽  
◽  
...  

Metal cutting operations involve intense heat generation owing to plastic deformation of the work piece and due to friction at the tool-work piece and tool-chip interface. The heat generated in metal cutting unfavourably affects the quality and thus the functional performance of the product. It is known that quality and functional performance is the function of roughness and dimensional accuracy. To maintain a longer component life, along with the robust material choice, a component should have good surface finish and dimensional accuracy. While, for the organization to monitor and control their environmental issues in a holistic manner, emphasis in adopting eco-friendly practices and protecting environment has been growing continuously across all the business sectors. In this study, an attempt is made to optimize the process parameter of stainless steel AISI-410 alloy, a nuclear graded material, for better surface finish. For this, Taguchi L9 orthogonal array was utilise to identify the process parameter and cutting environment. Analysis of variance (ANOVA) was also conducted to highlight the significant parameter that affects the surface finish most. A statistical model to forecast the surface roughness was also developed and was validated by an experiment with a maximum error of 12%. Results indicates that feed rate is the most critical factor that effects the surface roughness with the contribution of 91.5%, followed by environment with 5.22% contribution, cutting speed and depth of cut with 2.7 % and 0.4 % respectively. The correlation coefficient of 0.9213 and conformation tests reveals that developed statistical model predicts surface roughness with the statistical error limit.


1966 ◽  
Vol 181 (1) ◽  
pp. 687-705 ◽  
Author(s):  
P. L. Barlow

It has previously been suggested that the reduction in cutting forces obtained by the presence of fluids such as CCl4 on the backface or free surface of the forming chip was due to diffusion of the fluid into the body of the chip in the region of the shear zone. In the present work, experiments with carbon tetrachloride tagged with carbon-14 and with carbon tetrachloride tagged with chlorine-36 were performed with the object of assessing the extent of diffusion of lubricants into the chip when present on the free surface only. The results obtained disprove former hypotheses and suggest that the reduced cutting force is due solely to chemical reaction at the surface of the chip. Confirmation of the sensitivity of the surface of the deforming shear zone to change in surface condition was obtained by removing metal from this region by an electropolishing technique during slow speed cutting. By varying the electropolishing conditions increased or decreased cutting forces could be obtained. It is proposed that the result both of chemical reaction at the surface and of surface removal is to reduce the strain-hardening rate of the metal undergoing shear by reducing the surface barrier to the flow of dislocations out of the metal. The association of the surface reaction of carbon tetrachloride with a change in the strain-hardening characteristics of the metal in the shear zone leads to a classification of the backface phenomenon as a Rehbinder effect and enables this effect to be more closely defined than was hitherto possible. Evidence is also presented which indicates that the backface effect does not contribute to the reduction in cutting forces during rakeface lubrication and is therefore unimportant in practice where flood lubrication of the cutting region invariably occurs.


2019 ◽  
Vol 26 (3) ◽  
pp. 473-483
Author(s):  
Muhammad Omar Shaikh ◽  
Ching-Chia Chen ◽  
Hua-Cheng Chiang ◽  
Ji-Rong Chen ◽  
Yi-Chin Chou ◽  
...  

Purpose Using wire as feedstock has several advantages for additive manufacturing (AM) of metal components, which include high deposition rates, efficient material use and low material costs. While the feasibility of wire-feed AM has been demonstrated, the accuracy and surface finish of the produced parts is generally lower than those obtained using powder-bed/-feed AM. The purpose of this study was to develop and investigate the feasibility of a fine wire-based laser metal deposition (FW-LMD) process for producing high-precision metal components with improved resolution, dimensional accuracy and surface finish. Design/methodology/approach The proposed FW-LMD AM process uses a fine stainless steel wire with a diameter of 100 µm as the additive material and a pulsed Nd:YAG laser as the heat source. The pulsed laser beam generates a melt pool on the substrate into which the fine wire is fed, and upon moving the X–Y stage, a single-pass weld bead is created during solidification that can be laterally and vertically stacked to create a 3D metal component. Process parameters including laser power, pulse duration and stage speed were optimized for the single-pass weld bead. The effect of lateral overlap was studied to ensure low surface roughness of the first layer onto which subsequent layers can be deposited. Multi-layer deposition was also performed and the resulting cross-sectional morphology, microhardness, phase formation, grain growth and tensile strength have been investigated. Findings An optimized lateral overlap of about 60-70% results in an average surface roughness of 8-16 µm along all printed directions of the X–Y stage. The single-layer thickness and dimensional accuracy of the proposed FW-LMD process was about 40-80 µm and ±30 µm, respectively. A dense cross-sectional morphology was observed for the multilayer stacking without any visible voids, pores or defects present between the layers. X-ray diffraction confirmed a majority austenite phase with small ferrite phase formation that occurs at the junction of the vertically stacked beads, as confirmed by the electron backscatter diffraction (EBSD) analysis. Tensile tests were performed and an ultimate tensile strength of about 700-750 MPa was observed for all samples. Furthermore, multilayer printing of different shapes with improved surface finish and thin-walled and inclined metal structures with a minimum achievable resolution of about 500 µm was presented. Originality/value To the best of the authors’ knowledge, this is the first study to report a directed energy deposition process using a fine metal wire with a diameter of 100 µm and can be a possible solution to improving surface finish and reducing the “stair-stepping” effect that is generally observed for wires with a larger diameter. The AM process proposed in this study can be an attractive alternative for 3D printing of high-precision metal components and can find application for rapid prototyping in a range of industries such as medical and automotive, among others.


2015 ◽  
Vol 828-829 ◽  
pp. 62-68
Author(s):  
Khaled Abou-El-Hossein

Plastic optical components and lenses produced in mass quantities are usually manufactured using high-precision plastic injection technology. For that, high-precision plastic moulds with aluminium optical inserts made with extremely high dimension accuracy and high optical surface quality are used. Ultra-high precision single-point diamond turning have been successfully used in shaping optical mould inserts from various aluminium grades such as traditional 6061. However, extreme care should be taking when selecting machining parameters in order to produce optically valid surfaces before premature tool wear takes place especially when the machined optical materials has inadequate machining database. The current experimental study looks at the effect of cutting conditions on optical surfaces made from aluminium. The study embarks on helping establish some diamond machining database that helps engineers select the most favourable cutting parameters. The papers reports on the accuracy and surface finish quality received on an optical surface made on mould inserts from a newly developed aluminium alloy. Rapidly solidified aluminium (RSA) grades have been developed recently to address the various problems encountered when being cut by single-point diamond turning operation. The material is characterised by its extremely fine grained microstructure which helps extend the tool life and produce optical surfaces with nanometric surface finish. It is found the RSA grades can be successfully used to replace traditional optical aluminium grades when making optical surfaces. Surface finishes of as low as 10 nanometres and form accuracy of less than one micron can be achieved on RSA.


2019 ◽  
Vol 945 ◽  
pp. 556-562
Author(s):  
A.G. Kondrashov ◽  
D.T. Safarov ◽  
R.R. Kazargeldinov

Minimizing energy consumption in the processing of parts on metal-cutting equipment is most effective at the stage of designing the content of operations. Important in this process is the precise determination of the initial parameters - cutting forces. This parameter allows you to plan both energy consumption and perform additional calculations for the deformation of the tooling and workpiece in order to predict the geometric accuracy of the machined part. The article presents the results of experiments on measuring the circumferential cutting force during milling operations of an aluminum alloy workpiece with an end mill. The measurements were carried out by an indirect method - by recording the electrical power on the spindle and then calculating the circumferential cutting force. Theoretical analysis of the methods of calculation of cutting forces showed significant differences between the results obtained by domestic methods and recommendations of world manufacturers of cutting tools. Statistical analysis of the results of calculations based on reference data and measurements made it possible to assess the adequacy of the known methods for calculating cutting forces in order to minimize energy consumption in operations of processing parts on metal-cutting equipment


2015 ◽  
Vol 808 ◽  
pp. 40-47 ◽  
Author(s):  
Raluca Daicu ◽  
Gheorghe Oancea

Processing metallic materials by cutting using good electricity conductor cutting edges it appears an electrical current due mainly to the temperature in the cutting zone. Analyzing of the electrical current the information about the unfolding mode of the cutting process can be obtained. The cutting electrical current can be used in several applications: the estimation of the temperature in the cutting zone, the estimation of the cutting forces, the identification of the wear state of the cutting edge etc. The first researches were started in Russia and they were based on the utilization of the cutting electrical current to measure the temperature in the cutting zone. Afterwards, other applications were identified in the literature and the researches were extended in other countries like India, Japan, USA, Brazil, France, Bangladesh and Romania. This paper presents a review of the researches about the electrical current which appears at cutting process.


2014 ◽  
Vol 984-985 ◽  
pp. 15-24 ◽  
Author(s):  
S. Srikiran ◽  
K. Ramji ◽  
B. Satyanarayana

The generation of heat during machining at the cutting zone adversely affects the surface finish and tool life. The heat at the cutting zone, which plays a negative role due to poor thermal conductivity, resistance to wear, high strength at high temperatures and chemical degradation can be overcome by the use of proper lubrication. Advancements in the field of tribology have led to the use of solid lubricants replacing the conventional flood coolants. This work involves the use of nanoparticulate graphite powder as a lubricant in turning operations whose performance is judged in terms of cutting forces, tool temperature and surface finish of the work piece. The experimentation revealed the increase in cutting forces and the tool temperature when the solid lubricant used is decreased in particle size. The surface finish deteriorated with the decrease in particle size of the lubricant in the nanoregime.Keywords-Turning, Solid lubricant, Graphite, Minimum Quantity Lubrication, nano–particles,Weight percentage,Frictioncoefficient.


1965 ◽  
Vol 87 (1) ◽  
pp. 85-96 ◽  
Author(s):  
B. F. von Turkovich ◽  
J. R. Roubik ◽  
W. W. Gilbert ◽  
Inyon Ham ◽  
C. J. Oxford ◽  
...  

By members of the Literature Review Committee of the ASME Metal Processing Research Activity: J. L. Wennberg, General Electric Company, Chairman; B. F. von Turkovich, University of Illinois, Metal Cutting Analysis; J. R. Roubik, Kearney & Trecker Corp., Metal Cutting Practice; F. W. Boulger, Battelle Memorial Institute of Technology, Plastic Working of Metals; R. S. Hahn, the Heald Machine Co., Grinding; P. A. Smith, Massachusetts Institute of Technology, Metalworking Fluids. The purpose of this review is to appraise the important contributions to the knowledge of material processing appearing in the published literature and to present a digest of this new knowledge through the Society as a contribution to the improvement of material processing practices throughout industry.


Sign in / Sign up

Export Citation Format

Share Document