scholarly journals In-situ preparation of hierarchical Beta zeolite by steam- assisted crystallization method using meso-macroporous silica

2021 ◽  
Vol 2079 (1) ◽  
pp. 012015
Author(s):  
Delong Kong ◽  
Hansheng Li ◽  
XiaoBo Liu ◽  
Chunxiao Xu ◽  
Chen Ding ◽  
...  

Abstract In this paper, a series of meso-macroporous silica (MMS) were prepared by phase separation, then mic-meso-macroporous Beta zeolite was prepared by steam-assisted crystallization (SAC) method using the meso-macroporous silica as substrate. The factors such as the amount of water, crystallization time, aluminum source, amount of template agent during the SAC method were investigated. Various characterization methods such as BET, XRD, SEM were used to investigate the physical and chemical properties of the prepared materials. The results showed that the meso-macroporous silica could be transformed into Beta zeolite through the SAC method while the macroporous structure was still maintained.

2015 ◽  
Vol 228 ◽  
pp. 132-137 ◽  
Author(s):  
B. Łosiewicz ◽  
Grzegorz Dercz ◽  
Magdalena Popczyk

The Ni-Mo+MoO2composite coatings were obtained onto the steel substrate using anin situco-deposition of a Ni-Mo alloy and MoO2powder particles maintained in suspension in the potassium pyrophosphate bath. To characterize the physical and chemical properties of the obtained coatings, SEM, EDS, and XRD methods, were applied. It was found that the co-deposited MoO2particles strongly influenced the properties of the Ni-Mo alloy coating. In comparison with the comparable Ni-Mo deposit containing 45 at.% of Mo, the presence of MoO2embedded into the composite coating diminished the content of Mo alloyed with Ni to 23 at.%. The electrodeposited Ni-Mo+MoO2composite coating obtained under proposed electrochemical conditions contained 25 at.% of MoO2. The effect of the embedded MoO2as composite component on changes of the surface morphology and structure of the Ni-Mo binary alloy, was also discussed.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tong Liu ◽  
Shijun Yu ◽  
Xiaoshan Zhu ◽  
Ran Liao ◽  
Zepeng Zhuo ◽  
...  

Microplastics (MPs) have become the widespread contaminants, which raises concerns on their ecological hazards. In-situ detection of MP in water bodies is essential for clear assessment of the ecological risks of MPs. The present study proposes a method based on polarized light scattering which measures the polarization parameters of the scattered light at 120° to detect MP in water. This method takes the advantage of in-situ measurement of the individual particles and the experimental setup in principle is used. By use of the measured polarization parameters equipped by machine learning, the standard polystyrene (PS) spheres, natural water sample, and lab-cultured microalgae are explicitly discriminated, and MP with different physical and chemical properties can be differentiated. It can also characterize the weathering of different MP and identify the specific type from multiple types of MP. This study explores the capability of the proposed method to detect the physical and chemical properties, weathering state and concentration of MP in water which promises the future application in water quality sensing and monitoring.


Oceanography ◽  
2021 ◽  
Vol 34 (1) ◽  
pp. 44-57
Author(s):  
Jürgen Rullkötter ◽  
John Farrington

The severity of oil spills depends on the quantity of material released and its physical and chemical properties. The total amount of petroleum spilled during the Deepwater Horizon incident and the relative fractions of the chemical compound classes of the Macondo oil were obtained by measurements, observations, and model calculations, with a significant amount of uncertainty. Because petroleum is an extremely complex mixture of many thousands or more of gaseous, liquid, and solid constituents, full elucidation of their compositions at the molecular level is impossible with presently available analytical techniques. This paper reviews published work on widely used analytical techniques and points out that scientists’ varying approaches to research questions and preferences for methods of analysis constitute a source of uncertainty. In addition, the focus is on two technical advancements developed over the last two decades, namely two-dimensional gas chromatography and Fourier transform ion cyclotron resonance mass spectrometry. Both were particularly valuable in the analysis of the spilled Macondo oil and its weathering products. Among the different processes of alteration of the original oil, only in situ oil burning is dealt with in this paper. This review reveals the paucity of data on this mitigation process and shows the need for more systematic coordination of methods in burned oil research studies.


Soil Research ◽  
1981 ◽  
Vol 19 (1) ◽  
pp. 1
Author(s):  
AJ Koppi

A common toposequence on Bunya Phyllite in south-east Queensland was studied in detail at a representative site. Four sample profiles on the slope are described, and some physical and chemical properties are given. The clay minerals, derived from the weathering of the quartz-sericite-chlorite phyllite, comprise dioctahedral mica, dioctahedral vermiculite, an interstratification of these minerals, and kaolin. Properties are related to the slope; and the clay-rich horizon of the middle and lower slopes is considered to be formed mostly by in situ weathering. The classification of the genetic unit given by the slope and parent material is discussed.


2020 ◽  
Vol 22 (34) ◽  
pp. 18882-18890
Author(s):  
Adam H. Clark ◽  
Nadia Acerbi ◽  
Philip A. Chater ◽  
Shusaku Hayama ◽  
Paul Collier ◽  
...  

In situ studies on the physical and chemical properties of the interaction with hydrogen with a ceria coated alumina supported Au catalyst using fluorescence detection X-ray absorption near edge spectroscopy and X-ray total scattering.


Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 459 ◽  
Author(s):  
Simone Anzellini ◽  
Silvia Boccato

In the past couple of decades, the laser-heated diamond anvil cell (combined with in situ techniques) has become an extensively used tool for studying pressure-temperature-induced evolution of various physical (and chemical) properties of materials. In this review, the general challenges associated with the use of the laser-heated diamond anvil cells are discussed together with the recent progress in the use of this tool combined with synchrotron X-ray diffraction and absorption spectroscopy.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 7893-7905
Author(s):  
Qianqian Zhu ◽  
Jingjing Wang ◽  
Jianzhong Sun ◽  
Qianqian Wang

The application of cellulose hybrid biocomposites filled with calcium carbonate has attracted wide attention in packaging and other fields in recent years. In this study, regenerated cellulose (RC) films filled with calcium carbonate were successfully prepared by dissolution, regeneration, and in situ precipitation of CaCO3. The optical, mechanical, physical, and chemical properties of biocomposites were examined by UV-visible spectroscopy, tensile testing, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analyses (TGA). The results showed that RC films with different CaCO3 contents exhibited good flexibility, optical properties, mechanical strength, and thermal stability. The RC biocomposite filled with calcium carbonate showed a tensile strength of 84.7 ± 1.5 MPa at optimum conditions. These RC biocomposites filled with CaCO3 may find application in packaging.


2013 ◽  
Vol 1525 ◽  
Author(s):  
Xuedong Bai ◽  
Zhi Xu ◽  
Peng Gao ◽  
Kaihui Liu ◽  
Wenlong Wang ◽  
...  

ABSTRACTIn-situ transmission electron microscopy (TEM) method is powerful in a way that it can directly correlate the atomic-scale structure with physical and chemical properties. We will report on the construction and applications of the homemade in-situ TEM electrical and optical holders. Electrical transport of carbon nanotubes and photoconducting response on bending of individual ZnO nanowires have been studied inside TEM. Oxygen vacancy electromigration and its induced resistance switching effect have been probed in CeO2 films.


Sign in / Sign up

Export Citation Format

Share Document