scholarly journals Pulsar: physical generalization of the galactic time-space

2021 ◽  
Vol 2081 (1) ◽  
pp. 012013
Author(s):  
A E Avramenko

Abstract The article considers a complex of geometric representations of space-time, based on general dynamic theories of celestial mechanics in close connection with pulsar astrometry as the physical basis of coordinate-time transformations within the solar system and galactic space as a whole. The pulsar time scale is considered as a certain material system with continuous and stable motion, representing a certain measurable parameter – the rotation period P, which changes as a function of the independent time variable – its derivative. The physical pulsar scale is a sequence of measured daily increments of the initial radiation period within any duration. According to observations at the BSA radio telescope (Pushchino) of the pulsar B0950+08, the time scale was determined with an initial period of P0=0.2530653211840410 s on the date MJD0 = 58971 (02.05.2020; 21h.58m.07s). A measured daily increment ΔP = 1.4441·10E-11 s corresponds to the measured value of the derivative P = 1.6759949886E-16, which is determined by the observational timing data. Measured ΔP are defined in the 25th decimal place. Up to 14-15 digits, Δ P there is a pulsar time scale with femtosecond resolution. From 15-16 to 25 digits Δ P is presumably sequential fixation of discrete states of microparticles during quantum-mechanical interactions of matter and electromagnetic radiation of a pulsar. According to our hypothesis, the diversity of the material world and physical processes occurring in celestial and quantum mechanics are finite and it can be generalized. This implies the inseparable unity of physical laws in four-dimensional space of celestial and quantum mechanics, detectable on pulsar time scales under the same conditions.

2004 ◽  
Vol 218 ◽  
pp. 439-440
Author(s):  
Tinggao Yang ◽  
Guangren Ni

Long term timing of multiple millisecond pulsars can contribute to the study of an ensemble pulsar time scale PTens. A wavelet decomposition algorithm (WDA) was applied to define a PTens using the available millisecond pulsar timing datA. The PTens obtained from WDA is more stable than those resulting from other algorithms. The Chinese 50 m radio telescope is specially designed for PTens study and detection of gravitational wave background via millisecond pulsars timing observations. A scheme for multiple millisecond pulsar timing and ensemble pulsar time study is discussed in some detail.


2008 ◽  
Vol 17 (06) ◽  
pp. 1125-1130
Author(s):  
M. R. SHOJAEI ◽  
A. A. RAJABI ◽  
H. HASANABADI

In quantum mechanics the hyper-spherical method is one of the most well-established and successful computational tools. The general theory of harmonic polynomials and hyper-spherical harmonics is of central importance in this paper. The interaction potential V is assumed to depend on the hyper-radius ρ only where ρ is the function of the Jacobi relative coordinate x1, x2,…, xn which are functions of the particles' relative positions.


2021 ◽  
Author(s):  
Kaushal R Purohit ◽  
Rajendrasinh H PARMAR ◽  
Ajay Kumar Rai

Abstract Using the Qiang-Dong proper quantization rule (PQR) and the supersymmetric quantum mechanics approach, we obtained the eigenspectrum of the energy and momentum for time independent and time dependent Hulthen-screened cosine Kratzer potentials. For the suggested time independent Hulthen-screened cosine Kratzer potential, we solved the Schrodinger equation in D dimensions (HSCKP). The Feinberg-Horodecki equation for time-dependent Hulthen-screened cosine Kratzer potential was also solved (tHSCKP). To address the inverse square term in the time independent and time dependent equations, we employed the Greene-Aldrich approximation approach. We were able to extract time independent and time dependent potentials, as well as their accompanying energy and momentum spectra. In three-dimensional space, we estimated the rotational vibrational (RV) energy spectrum for many homodimers ($H_2, I_2, O_2$) and heterodimers ($MnH, ScN, LiH, HCl$). We also used the recently introduced formula approach to obtain the relevant eigen function. We also calculated momentum spectra for the dimers $MnH$ and $ScN$. The method is compared to prior methodologies for accuracy and validity using numerical data for heterodimer $LiH, HCl$ and homodimer $I_2, O_2,H_2$. The calculated energy and momentum spectra are tabulated and analysed.


2010 ◽  
Vol 11 (6) ◽  
pp. 1263-1274 ◽  
Author(s):  
Ling Tang ◽  
Faisal Hossain ◽  
George J. Huffman

Abstract Hydrologists and other users need to know the uncertainty of the satellite rainfall datasets across the range of time–space scales over the whole domain of the dataset. Here, “uncertainty” refers to the general concept of the “deviation” of an estimate from the reference (or ground truth) where the deviation may be defined in multiple ways. This uncertainty information can provide insight to the user on the realistic limits of utility, such as hydrologic predictability, which can be achieved with these satellite rainfall datasets. However, satellite rainfall uncertainty estimation requires ground validation (GV) precipitation data. On the other hand, satellite data will be most useful over regions that lack GV data, for example developing countries. This paper addresses the open issues for developing an appropriate uncertainty transfer scheme that can routinely estimate various uncertainty metrics across the globe by leveraging a combination of spatially dense GV data and temporally sparse surrogate (or proxy) GV data, such as the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar and the Global Precipitation Measurement (GPM) mission dual-frequency precipitation radar. The TRMM Multisatellite Precipitation Analysis (TMPA) products over the United States spanning a record of 6 yr are used as a representative example of satellite rainfall. It is shown that there exists a quantifiable spatial structure in the uncertainty of satellite data for spatial interpolation. Probabilistic analysis of sampling offered by the existing constellation of passive microwave sensors indicate that transfer of uncertainty for hydrologic applications may be effective at daily time scales or higher during the GPM era. Finally, a commonly used spatial interpolation technique (kriging), which leverages the spatial correlation of estimation uncertainty, is assessed at climatologic, seasonal, monthly, and weekly time scales. It is found that the effectiveness of kriging is sensitive to the type of uncertainty metric, time scale of transfer, and the density of GV data within the transfer domain. Transfer accuracy is lowest at weekly time scales with the error doubling from monthly to weekly. However, at very low GV data density (<20% of the domain), the transfer accuracy is too low to show any distinction as a function of the time scale of transfer.


1992 ◽  
Vol 128 ◽  
pp. 213-213
Author(s):  
A. D. Kuz'min ◽  
Yu. I. Alekseev ◽  
K. A. Lapaev ◽  
B. Ya. Losovsky ◽  
A. A. Salnikov

AbstractThe study of millisecond pulsars is of great astrophysical interest. One may expect that the rotation effect on the structure of the magnetosphere should be very significant. In view of the short duration of the pulses they are very suitable for investigations of the interstellar medium; at least they hold the promise for the pulsar time scale.Millisecond pulsars were discovered and have been studied on the basis of their radio-emission at decimeter wavelengths. At longer wavelengths scattering of the radio emission in the interstellar medium is the principal limitation of millisecond pulsar observations.


KronoScope ◽  
2013 ◽  
Vol 13 (1) ◽  
pp. 67-84 ◽  
Author(s):  
Pierre Martinetti

Abstract We discuss the emergence of time in quantum gravity and ask whether time is always “something that flows.” We first recall that this is indeed the case in both relativity and quantum mechanics, although in very different manners: time flows geometrically in relativity (i.e., as a flow of proper time in the four dimensional space-time), time flows abstractly in quantum mechanics (i.e., as a flow in the space of observables of the system). We then ask the same question in quantum gravity in the light of the thermal time hypothesis of Connes and Rovelli. The latter proposes to answer the question of time in quantum gravity (or at least one of its many aspects) by postulating that time is a state-dependent notion. This means that one is able to make a notion of time as an abstract flow—that we call the thermal time—emerge from the knowledge of both: the algebra of observables of the physical system under investigation; a state of thermal equilibrium of this system. Formally, the thermal time is similar to the abstract flow of time in quantum mechanics, but we show in various examples that it may have a concrete implementation either as a geometrical flow or as a geometrical flow combined with a non-geometric action. This indicates that in quantum gravity, time may well still be “something that flows” at some abstract algebraic level, but this does not necessarily imply that time is always and only “something that flows” at the geometric level.


Author(s):  
Wen Chen ◽  
Yingjie Liang ◽  
Xindong Hei

AbstractThis paper proposes a novel structural derivative approach to tackle the perplexing modeling problem of ultraslow diffusion. The structural function plays a central role in this new strategy as a kernel transform of underlying time-space fabric of physical systems. Ultraslow diffusion has been observed in numerous lab experiments and field observations, whose behaviors deviate dramatically from the standard anomalous diffusion models characterizing power function of time. The logarithmic diffusion model has since been used to describe bizarre process of ultraslow diffusion but with very limited success. This study applies the inverse Mittag-Leffler function as the structural function in the structural derivative modeling ultraslow diffusion of a random system of two interacting particles. It is observed that the dynamics of two interacting particles are respectively the ballistic motion at the short time scale and the Sinai ultraslow diffusion at the long time scale. Compared with the logarithmic diffusion model, the inverse Mittag-Leffler diffusion model has higher accuracy and manifests clearer physical mechanism. Numerical experiments show that the structural derivative is a feasible mathematical tool to model the ultraslow diffusion using the inverse Mittag-Leffler function as its structural function.


1988 ◽  
Vol 31 (9) ◽  
pp. 881-882
Author(s):  
A D Kuz'min
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document