scholarly journals The rolling simulation for cold work metal hardening

2021 ◽  
Vol 2094 (4) ◽  
pp. 042023
Author(s):  
V Urazov ◽  
A D Danilov ◽  
K Yu Gusev ◽  
P Yu Gusev ◽  
D N Meshkov

Abstract This article describes the results of a calculation and experimental analysis of destructive physical phenomena that appear in critical sections of industrial and power-related equipment, and lead to occurrence of various operational damages. It was shown that pipeline welded connections are the sections most prone to crack development, therefore the traditional strength calculations need to be combined with fracture mechanics criteria and thorough materials analysis of flawing and structural imperfection. The cold work hardening technique was proposed as a solution for the problem of critical sections performance property restoration. The technique uses surface plastic deformation phenomenon to change the material’s throughthickness stress distribution. In order to optimise surface hardening for welded connections prone to defect formation, we proposed a simulation for analysing an actual pipeline sections load. To assess the applicability of the simulation results, the cold work hardening technique was developed and introduced using a full-scale test sample for damaged areas of welded connections in ø426×40 vent pipes at Novovoronezh NPP Unit No.5.

2018 ◽  
pp. 47-57 ◽  
Author(s):  
Іван Семенович Афтаназів ◽  
Лілія Іванівна Шевчук ◽  
Орися Іванівна Строган ◽  
Леся Романівна Струтинська

Technology, equipment, and results of stand tests of plane wheel hubs and flanges strengthened by surface plastic deformation are described. The new method suggested by the authors is called vibrational-centrifugal strengthening treatment. It belongs to the method group of dynamic strengthening of revolutional shape parts. It is based on impact interaction of the part processed with a massive tool which is rolled over the strengthened surface of the part when under vibration. Moreover, the impact contact between the part and the tool occurs through a small number of deformable bodies. This provides formation of compressive residual stress in the contact places in the part material. For magnesium wheel hubs (alloy ML-12) residual compressive stress is within 110 MPa, for aluminium ones (alloy AK6) it is within 250 MPa. The degree of strengthening of outer zone material for magnesium wheel hubs is 45...59 % with surface micro-hardness increasing up to 1150 N/m2 and the thickness of the strengthened layer being   0.9...1.0 mm. When strengthening aluminium wheel hubs and flanges, the thickness of the strengthened layer is to be 0.6...0.9 mm with a degree of cold work being 25...30 %. Fatigue studies of a party of KT-141 type wheel hubs strengthened by the method (magnesium alloy MT-12) demonstrated their service life increasing up to 1000 take-offs and landings at the safety coefficient of n = 3.5. The lifetime of this type of wheel hubs strengthened by roller burnishing did not exceed 750 take-offs and landings; for unstrengthened ones, it made 500 take-offs and landings at lower values of the safety coefficient. Strengthening the wheel hub web KT-150K (aluminium alloy AK6) increases their lifetime by 28...30 % on average. Apart from plane wheel hubs and flanges, the method of vibrational-centrifugal strengthening treatment can be applied for increasing the lifespan of various parts of chassis components of circular section, for strengthening nonferrous metal webs of car wheels, radius blends and steel shaft journals etc.


Author(s):  
О.В. Уразов ◽  
А.Д. Данилов

Представлены результаты экспериментальных исследований процесса восстановления поврежденных поверхностей трубопроводов различных диаметров методом поверхностного наклепа, реализующего явление поверхностного пластического деформирования, приводящее к изменению распределения напряжений по толщине, выполнено обоснование оптимальных режимов его проведения . При этом было осуществлено численное моделирование процесса накатки, определены оптимальные значения следующих параметров: глубины и силы ППД, скорости ППД, подачи ролика, формы рабочей поверхности используемого ролика. При анализе были учтены следующие физико-механические характеристики: глубина наклепа, величина остаточных напряжений, глубина распределения остаточных напряжений, время обкатки, нагрузка на ролик. Доказано очевидное преимущество роликов большего радиуса профиля - они позволяют обеспечить необходимое изменение шероховатости обрабатываемой поверхности при обкатке с большей подачей, что приводит к снижению времени технологического процесса. При этом в принятом диапазоне параметров режимов обкатки (нагрузка 2500÷3000Н, глубина вдавливания 0.04÷0.06мм) величины компонентов остаточных напряжений оказались практически идентичными для исследованных режимов всех рассмотренных роликов. Полученные результаты были положены в основу технологии восстановительного ремонта трубопроводов различного диаметра без остановки производственного процесса на Нововоронежской АЭС и создана промышленная установка с числовым программным управлением для реализации данной технологии Here we present the results of experimental studies of the process of restoration of damaged surfaces of pipelines of various diameters by the method of surface work hardening, which implements the phenomenon of surface plastic deformation, leading to a change in the distribution of stresses along the thickness. At the same time, we carried out a numerical simulation of the knurling process, we determined the optimal values of the following parameters: the depth and strength of the SPD, the speed of the SPD, the feed of the roller, the shape of the working surface of the roller used. The analysis took into account the following physical and mechanical characteristics: work hardening depth, residual stress value, residual stress distribution depth, running time, roller load. We proved the obvious advantage of rollers with a larger profile radius - they allow one to provide the necessary change in the roughness of the machined surface during rolling with a higher feed, which leads to a decrease in the time of the technological process. In this case, in the accepted range of parameters of the running modes (load 2500-3000N, indentation depth 0.04-0.06 mm), the values of the residual stress components turned out to be almost identical for the considered modes for all the considered rollers. We used the results as the basis for the technology of restorative repair of pipelines of various diameters without stopping the production process at the Novovoronezh NPP and an industrial unit with numerical control was created to implement this technology


Author(s):  
Andrey Kirichek ◽  
Dmitriy Solovyev

The article is devoted to the analysis of known structures of impact devices used in industry in order to obtain recommendations for their adaptation or when creating new structures for wave strain hardening by surface plastic deformation. The analysis was carried out on the used drive and on the main parameters of impact devices: impact energy, impact frequency, relative metal consumption and efficiency. The options are the best combinations of parameters for electric, pneumatic and hydraulic drives. Recommendations are given on the use of such devices, with appropriate adaptation, as pulse generators for wave strain hardening.


Author(s):  
Семен Зайдес ◽  
Semen Zaides

Technological potentialities at finish-strengthening processing of low-rigid parts of shaft- and axle types with local ways of machining impact are rather limited. In the paper there are considered new ways for strengthening allowing obtaining qualitative surface strengthening in machine parts at high productivity of an engineering procedure.


2020 ◽  
pp. 252-255
Author(s):  
V.I. Bolobov ◽  
V.S. Bochkov ◽  
E.V. Akhmerov ◽  
V.A. Plashchinsky ◽  
E.A. Krivokrisenko E.A.

On the example of Hadfield steel, as the most common material of fast-wearing parts of mining equipment, the effect of surface hardening by plastic deformation on their impact and abrasive wear resistance is considered. Wear test is conducted on magnetic ironstone as typical representative of abrasive and hard rock. As result of wear of initial samples with hardness of ∼200 HB and samples pre-hardened with different intensities to the hardness of 300, 337 and 368 HB, it is found that during the initial testing period, the initial samples pass the “self-cold-work hardening” stage with increase in hardness to ∼250 HB, which remains virtually unchanged during further tests; the hardness of the pre-hardened samples does not change significantly throughout the tests. It is established that the rate of impact-abrasive wear of pre-hardened samples is significantly (up to 1.4 times) lower than the original ones that are not subjected to plastic deformation, and decreases with increasing degree of cold-work hardening. Preliminary surface hardening by plastic deformation can serve as effective way to increase the service life of fast-wearing working parts of mining equipment.


2020 ◽  
pp. 79-82
Author(s):  
D.YU. Belan ◽  
G.B. Toder ◽  
K.V. Averkov ◽  
YU.V. Titov

A tool was developed for smoothing the plates of an electric motor collector. An analytical dependence of the roughness parameter of the machined surface on the force applied to the tool is obtained. Keywords traction electric motor, collector, diamond burnishing tool, surface-plastic deformation, repair, roughness. [email protected]


2014 ◽  
Vol 777 ◽  
pp. 213-218 ◽  
Author(s):  
Chandrahas Rathod ◽  
David Wexler ◽  
Vladimir Luzin ◽  
Paul Boyd ◽  
Manicka Dhanasekar

Insulated rail joints (IRJs) are a primary component of the rail track safety and signalling systems. Rails are supported by two fishplates which are fastened by bolts and nuts and, with the support of sleepers and track ballast, form an integrated assembly. IRJ failure can result from progressive defects, the propagation of which is influenced by residual stresses in the rail. Residual stresses change significantly during service due to the complex deformation and damage effects associated with wheel rolling, sliding and impact. IRJ failures can occur when metal flows over the insulated rail gap (typically 6-8 mm width), breaks the electrically isolated section of track and results in malfunction of the track signalling system. In this investigation, residual stress measurements were obtained from rail-ends which had undergone controlled amounts of surface plastic deformation using a full scale wheel-on-track simulation test rig. Results were compared with those obtained from similar investigations performed on rail ends associated with ex-service IRJs. Residual stresses were measured by neutron diffraction at the Australian Nuclear Science and Technology Organisation (ANSTO). Measurements with constant gauge volume 3x3x3 mm3 were carried in the central vertical plane on 5mm thick sliced rail samples cut by an electric discharge machine (EDM). Stress evolution at the rail ends was found to exhibit characteristics similar to those of the ex-service rails, with a compressive zone of 5mm deep that is counterbalanced by a tension zone beneath, extending to a depth of around 15mm. However, in contrast to the ex-service rails, the type of stress distribution in the test-rig deformed samples was apparently different due to the localization of load under the particular test conditions. In the latter, in contrast with clear stress evolution, there was no obvious evolution of d0. Since d0 reflects rather long-term accumulation of crystal lattice damage and microstructural changes due to service load, the loading history of the test rig samples has not reached the same level as the ex-service rails. It is concluded that the wheel-on-rail simulation rig provides the potential capability for testing the wheel-rail rolling contact conditions in rails, rail ends and insulated rail joints.


2021 ◽  
pp. 26-27
Author(s):  
V.A. Korotkov

The finish recovery of spools of grease lubricant stations by surface ultrasonic plastic deformation and the use of carbonitration is considered. Keywords: spools, recovery, carbonitration, surface plastic deformation. [email protected]


Sign in / Sign up

Export Citation Format

Share Document