scholarly journals A MBD Model-driven Automatic Generation Method of On-machine Measuring Program for CNC Machining

2021 ◽  
Vol 2095 (1) ◽  
pp. 012045
Author(s):  
Wenhao Zhong ◽  
Cheng Zhai ◽  
Yansheng Cao ◽  
Meiqing Wang

Abstract Aiming at the problem that the programming of on-machine measurement in CNC machining process is heavily dependent on operators and the efficiency is lower, a MBD model-driven automatic generation method of on-machine measuring program is proposed. The characteristics of measuring program is analysed and the relationship between the parameters of measuring cycle and the features of MBD model is built. The approach of PMI (product manufacturing information) data identifying and extracting is presented. The scheme for transforming the PMI data and geometric features to measuring cycle parameters is constructed. In order to make the measuring program adapt to the change of probe position which stored in different tool magazine, the way of collecting the position automatically by OPC DA protocol is provided. On the basis of the proposed methods and approaches, an on-machine measuring program generating software system has been developed. The running result of the system is given, and the feasibility and effectiveness of the method were demonstrated.

2013 ◽  
Vol 58 (3) ◽  
pp. 871-875
Author(s):  
A. Herberg

Abstract This article outlines a methodology of modeling self-induced vibrations that occur in the course of machining of metal objects, i.e. when shaping casting patterns on CNC machining centers. The modeling process presented here is based on an algorithm that makes use of local model fuzzy-neural networks. The algorithm falls back on the advantages of fuzzy systems with Takagi-Sugeno-Kanga (TSK) consequences and neural networks with auxiliary modules that help optimize and shorten the time needed to identify the best possible network structure. The modeling of self-induced vibrations allows analyzing how the vibrations come into being. This in turn makes it possible to develop effective ways of eliminating these vibrations and, ultimately, designing a practical control system that would dispose of the vibrations altogether.


2021 ◽  
Vol 11 (11) ◽  
pp. 4959
Author(s):  
Peng Guo ◽  
Yijie Wu ◽  
Guang Yang ◽  
Zhebin Shen ◽  
Haorong Zhang ◽  
...  

The curvature of the NURBS curve varies along its trajectory, therefore, the commonly used feedrate-planning method, which based on the acceleration/deceleration (Acc/Dec) model, is difficult to be directly applied in CNC machining of a NURBS curve. To address this problem, a feedrate-planning method based on the critical constraint curve of the feedrate (CCC) is proposed. Firstly, the problems of existing feedrate-planning methods and their causes are analyzed. Secondly, by considering both the curvature constraint and the kinematic constraint during the Acc/Dec process, the concept of CCC which represents the relationship between the critical feedrate-constraint value and the arc length is proposed. Then the CCC of a NURBS curve is constructed, and it has a concise expression conforming to the Acc/Dec model. Finally, a feedrate-planning method of a NURBS curve based on CCC and the Acc/Dec model is established. In the simulation, a comparison between the proposed method and the conventional feedrate-planning method is performed, and the results show that, the proposed method can reduce the Acc/Dec time by over 40%, while little computational burden being added. The machining experimental results validate the real-time performance and stability of the proposed method, and also the machining quality is verified. The proposed method offers an effective feedrate-planning strategy for a NURBS curve in CNC machining.


2021 ◽  
Vol 11 (6) ◽  
pp. 2554
Author(s):  
Yoel Arroyo ◽  
Ana I. Molina ◽  
Miguel A. Redondo ◽  
Jesús Gallardo

This paper introduces Learn-CIAM, a new model-based methodological approach for the design of flows and for the semi-automatic generation of tools in order to support collaborative learning tasks. The main objective of this work is to help professors by establishing a series of steps for the specification of their learning courses and the obtaining of collaborative tools to support certain learning activities (in particular, for in-group editing, searching and modeling). This paper presents a complete methodological framework, how it is supported conceptually and technologically, and an application example. So to guarantee the validity of the proposal, we also present some validation processes with potential designers and users from different profiles such as Education and Computer Science. The results seem to demonstrate a positive reception and acceptance, concluding that its application would facilitate the design of learning courses and the generation of collaborative learning tools for professionals of both profiles.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Mohammadali Gharaat ◽  
Mohammadreza Sharbaf ◽  
Bahman Zamani ◽  
Abdelwahab Hamou-Lhadj

2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Diego Andrade ◽  
Ved Vyas ◽  
Kenji Shimada

While modern computer aided design (CAD) systems currently offer tools for generating simple patterns, such as uniformly spaced rectangular or radial patterns, these tools are limited in several ways: (1) They cannot be applied to free-form geometries used in industrial design, (2) patterning of these features happens within a single working plane and is not applicable to highly curved surfaces, and (3) created features lack anisotropy and spatial variations, such as changes in the size and orientation of geometric features within a given region. In this paper, we introduce a novel approach for creating anisotropic patterns of geometric features on free-form surfaces. Complex patterns are generated automatically, such that they conform to the boundary of any specified target region. Furthermore, user input of a small number of geometric features (called “seed features”) of desired size and orientation in preferred locations could be specified within the target domain. These geometric seed features are then transformed into tensors and used as boundary conditions to generate a Riemannian metric tensor field. A form of Laplace's heat equation is used to produce the field over the target domain, subject to specified boundary conditions. The field represents the anisotropic pattern of geometric features. This procedure is implemented as an add-on for a commercial CAD package to add geometric features to a target region of a three-dimensional model using two set operations: union and subtraction. This method facilitates the creation of a complex pattern of hundreds of geometric features in less than 5 min. All the features are accessible from the CAD system, and if required, they are manipulable individually by the user.


2013 ◽  
Vol 561 ◽  
pp. 559-563
Author(s):  
Hai Ming Hu ◽  
Hui Li ◽  
De Bao Yin

This paper introduces vectorization technology fromTrueType font for the text on the sidewall plate of the tire mold. TrueTypefont processing technology is the extraction of Windows functions and datatypes of the font outline. Call the API function to process the text in orderto achieve the CNC Machining of the text. It completes the tire mold word-processingsoftware on this basis. The software enables a variety of functions includingtext layout, font zoom, font spacing adjustment, font choice. It also providesa rapid tool for the quickly arranged and CNC machining of the text on thesidewall plate of the tire mold.


Author(s):  
Xuda Qin ◽  
Xingfeng Cao ◽  
Hao Li ◽  
Meng Zhou ◽  
Ende Ge ◽  
...  

Due to good aerodynamic performance and reliability, countersunk bolt joint is one of the most commonly used connection methods for carbon fiber reinforced polymer (CFRP) components in the aircraft. However, the countersunk hole machining process is inevitably accompanied by geometric errors, which will directly affect the mechanical properties of the joint structure. This paper presents a numerical and experimental investigation on the effect of countersunk hole geometry errors on the fatigue performance of CFRP bolted joints. FE model of CFRP countersunk bolted joints with designed geometry errors are established, and the rationality of the FE analysis was verified by fatigue life and failure forms. The CFRP bolted structure failure mechanism under fatigue load and influence of hole-making geometry error (including countersunk fillets radius, countersunk depth, and countersunk angle) on the fatigue life are investigated. Based on the relationship between fatigue life and the geometry error, the corresponding tolerances for CFRP bolt joint countersunk hole are determined as well. The research results can provide a reference for establishing reasonable geometric accuracy requirements for CFRP joint hole machining.


Author(s):  
Q. J. Ge ◽  
B. Ravani

Abstract This paper follows a previous one on the computation of spatial displacements (Ravani and Ge, 1992). The first paper dealt with the problem of computing spatial displacements from a minimum number of simple features of points, lines, planes, and their combinations. The present paper deals with the same problem using a redundant set of the simple geometric features. The problem for redundant information is formulated as a least squares problem which includes all simple features. A Clifford algebra is used to unify the handling of various feature information. An algorithm for determining the best orientation is developed which involves finding the eigenvector associated with the least eigenvalue of a 4 × 4 symmetric matrix. The best translation is found to be a rational cubic function of the best orientation. Special cases are discussed which yield the best orientation in closed form. In addition, simple algorithms are provided for automatic generation of body-fixed coordinate frames from various feature information. The results have applications in robot and world model calibration for off-line programming and computer vision.


2013 ◽  
Vol 395-396 ◽  
pp. 1008-1014
Author(s):  
Yu Li ◽  
Chao Sun

Chatter has been a problem in CNC machining process especially during machining thin-walled components with low stiffness. For accurately predicting chatter stability in machining Ti6Al4V thin-walled components, this paper establishes a chatter prediction method considering of cutting parameters and tool path. The fast chatter prediction method for thin-walled components is based on physical simulation software. Cutting parameters and tool path is achieved through the chatter stability lobes test and finite element simulation. Machining process is simulated by the physical simulation software using generated NC code. This proposed method transforms the NC physical simulation toward the practical methodology for the stability prediction over the multi-pocket structure milling.


2010 ◽  
Vol 29 (4) ◽  
pp. 171 ◽  
Author(s):  
Alessio Malizia ◽  
Paolo Bottoni ◽  
S. Levialdi

The design and development of a digital library involves different stakeholders, such as: information architects, librarians, and domain experts, who need to agree on a common language to describe, discuss, and negotiate the services the library has to offer. To this end, high-level, language-neutral models have to be devised. Metamodeling techniques favor the definition of domainspecific visual languages through which stakeholders can share their views and directly manipulate representations of the domain entities. This paper describes CRADLE (Cooperative-Relational Approach to Digital Library Environments), a metamodel-based framework and visual language for the definition of notions and services related to the development of digital libraries. A collection of tools allows the automatic generation of several services, defined with the CRADLE visual language, and of the graphical user interfaces providing access to them for the final user. The effectiveness of the approach is illustrated by presenting digital libraries generated with CRADLE, while the CRADLE environment has been evaluated by using the cognitive dimensions framework.


Sign in / Sign up

Export Citation Format

Share Document