scholarly journals The Influence of a 3D Model of a Radio Electronic Component on Thermal Simulation

2021 ◽  
Vol 2096 (1) ◽  
pp. 012052
Author(s):  
A V Bashkirov ◽  
V V Glotov ◽  
I S Bobylkin ◽  
Yu S Balashov ◽  
A S Kushnarev

Abstract Very often, when designing and developing radio electronic devices, engineers are regularly faced with the need to solve various kinds of problems to ensure the operation of a product under the required mechanical loads or thermal conditions during operation. One of the main issues that arise when conducting thermal modeling of radio electronics is the correct assessment of the results. There are a number of electronic components that need to be cooled, mainly through a printed circuit board: power supply transistors, power diodes, microcircuits, etc. For such elements, 90% (or more) of the heat flux from the component is diverted through the printed circuit board, and then to the radiator. Therefore, when carrying out the simulation, it is necessary to have previously obtained reliable temperature results on the power elements. The use of a detailed 3D model for modeling is most often unjustified and can introduce certain errors in the calculations. This article compares different 3D transistor models and the effect of detailing on the modeling process in CAD SolidWorks.

Author(s):  
В.А. Деревянко ◽  
А.Ф. Латыпов

Рассмотрена возможность использования “термометра сопротивления” для измерения распределения температуры в двумерной области. Создана математическая модель датчика, сводящаяся к решению томографической задачи. Важной особенностью модели является то, что число уравнений в системе линейных алгебраических уравнений (СЛАУ) больше числа переменных. Это позволяет уменьшить ошибки в исходных данных. Создана программа для определения решения СЛАУ с плохо обусловленной матрицей, позволяющая обрабатывать результаты измерений в реальном масштабе времени. Выполнен тестовый расчет. При малом числе ракурсов измерений получена удовлетворительная точность восстановления температуры. Purpose. To ensure a long period of active lifetime of space vehicles, it is necessary to use effective methods and means to control physical processes leading to premature failure of on-board radio electronic equipment both at the stage of ground testing and during active operation of the spacecraft in space. Long-term testing experience for electronic equipment shows that monitoring compliance with necessary temperature conditions of onboard equipment plays the main role in ensuring reliability. Ideally, the thermal control should be performed for all elements of radio electronic units in real time. Method. The possibility of using a “two-dimensional resistance thermometer” for recording the thermal field of a printed circuit board of an electronic unit is considered. The principle of operation of the thermometer is based on the measurement of integral resistances of extended mutually intersecting conductors in a medium with inhomogeneous temperature distribution. The registration of the integral resistances of individual conductors is possible with the help of an automated measuring system by solving the tomographic problem aimed to obtain the temperature distribution on the surface of the printed circuit board. Result. The design of the “two-dimensional temperature sensor” is considered. The sensor is technologically compatible with the design of the printed circuit board of the radio electronic unit. A mathematical model of the sensor is developed. It is reduced to the solution of a tomographic problem. A program for solving a system of linear equations with an ill-conditioned matrix is developed that provides the real-time processing for measurement results. The test calculation is performed. A satisfactory accuracy of the temperature restoration is achieved. Conclusion. A “two-dimensional resistance thermometer” can be used to measure a two-dimensional temperature field for a printed circuit board of a radio electronic unit in real time. The mathematical model allows adapting the thermometer design to a specific radio electronic unit and selecting the required accuracy of the temperature field restoration.


2010 ◽  
Vol 654-656 ◽  
pp. 2716-2719
Author(s):  
Hyo Soo Lee ◽  
Hyouk Chon Kwon

The effectiveness of residual stress on forming copper patterns of printed circuit board was investigated during applied thermal conditions. Generally, the electrolytic copper foil showed a compressive residual stress about -54MPa as received, which easily caused to form copper patterns irregularly. We verified the compressive residual stress was relaxed with applying thermal conditions under 200°C for a few hours. And also, we observed that the compressive residual stress of copper foil tended to be relaxed, constant, and compressive again during heating times at each temperature. The relationships between residual stress and etching factor of copper pattern were analyzed in this works.


2012 ◽  
Vol 132 (6) ◽  
pp. 404-410 ◽  
Author(s):  
Kenichi Nakayama ◽  
Kenichi Kagoshima ◽  
Shigeki Takeda

2014 ◽  
Vol 5 (1) ◽  
pp. 737-741
Author(s):  
Alejandro Dueñas Jiménez ◽  
Francisco Jiménez Hernández

Because of the high volume of processing, transmission, and information storage, electronic systems presently requires faster clock speeds tosynchronizethe integrated circuits. Presently the “speeds” on the connections of a printed circuit board (PCB) are in the order of the GHz. At these frequencies the behavior of the interconnects are more like that of a transmission line, and hence distortion, delay, and phase shift- effects caused by phenomena like cross talk, ringing and over shot are present and may be undesirable for the performance of a circuit or system.Some of these phrases were extracted from the chapter eight of book “2-D Electromagnetic Simulation of Passive Microstrip Circuits” from the corresponding author of this paper.


Author(s):  
Prabjit Singh ◽  
Ying Yu ◽  
Robert E. Davis

Abstract A land-grid array connector, electrically connecting an array of plated contact pads on a ceramic substrate chip carrier to plated contact pads on a printed circuit board (PCB), failed in a year after assembly due to time-delayed fracture of multiple C-shaped spring connectors. The land-grid-array connectors analyzed had arrays of connectors consisting of gold on nickel plated Be-Cu C-shaped springs in compression that made electrical connections between the pads on the ceramic substrates and the PCBs. Metallography, fractography and surface analyses revealed the root cause of the C-spring connector fracture to be plating solutions trapped in deep grain boundary grooves etched into the C-spring connectors during the pre-plating cleaning operation. The stress necessary for the stress corrosion cracking mechanism was provided by the C-spring connectors, in the land-grid array, being compressed between the ceramic substrate and the printed circuit board.


Author(s):  
William Ng ◽  
Kevin Weaver ◽  
Zachary Gemmill ◽  
Herve Deslandes ◽  
Rudolf Schlangen

Abstract This paper demonstrates the use of a real time lock-in thermography (LIT) system to non-destructively characterize thermal events prior to the failing of an integrated circuit (IC) device. A case study using a packaged IC mounted on printed circuit board (PCB) is presented. The result validated the failing model by observing the thermal signature on the package. Subsequent analysis from the backside of the IC identified a hot spot in internal circuitry sensitive to varying value of external discrete component (inductor) on PCB.


Sign in / Sign up

Export Citation Format

Share Document