scholarly journals Modeling the Air Flow Cooling Process and Determining the Geometric Dimensions of the GASK Model

2021 ◽  
Vol 2096 (1) ◽  
pp. 012200
Author(s):  
I V Zaychenko ◽  
V S Sokolova ◽  
S A Gordin ◽  
V V Bazheryanu

Abstract The article is devoted to the calculation of the parameters of the air flow cooling process and the determination of the geometrical dimensions of a model of a gas-jet apparatus of a special design with a gas flow bifurcation (GASK). The article discusses the device and the principle of operation of the GASK, calculates the dependences of temperature on the pressure drop, gas flow rate on the gas pressure ratio. The calculated parameters of the process under consideration and the geometric dimensions of the GASK are given.

Author(s):  
Dejan Brkić

Today, two very efficient methods for calculation of flow distribution per branches of a looped gas pipeline are available. Most common is improved Hardy Cross method, while the second one is so-called unified node-loop method. For gas pipeline, gas flow rate through a pipe can be determined using Colebrook equation modified by AGA (American Gas Association) for calculation of friction factor accompanied with Darcy-Weisbach equation for pressure drop and second approach is using Renouard equation adopted for gas pipeline calculation. For the development of Renouard equation for gas pipelines some additional thermodynamic properties are involved in comparisons with Colebrook and Darcy-Weisbach model. These differences will be explained. Both equations, the Colebrook’s (accompanied with Darcy-Weisbach scheme) and Renouard’s will be used for calculation of flow through the pipes of one gas pipeline with eight closed loops which are formed by pipes. Consequently four different cases will be examined because the network is calculated using improved Hardy Cross method and unified node-loop method. Some remarks on optimization in this area of engineering also will be mentioned.


1968 ◽  
Vol 39 (4) ◽  
pp. 608-609 ◽  
Author(s):  
W. Brennen ◽  
Robert L. Brown

1985 ◽  
Vol 39 (6) ◽  
pp. 916-920 ◽  
Author(s):  
R. K. Skogerboe ◽  
S. J. Freeland

This paper describes the results of the first stage of an investigation designed to extend present knowledge of the factors affecting aerosol production, transport, vaporization, and atomization in analytical spectroscopy systems. It focuses on factors controlling aspiration of aqueous solutions. The results demonstrate that the effect of gas flow on the pressure drop induced at the tip of the solution draw tube can be described by a simple linear equation; that the relationship between gas flow rate and solution nebulization rate can also be modelled by a simple equation; and that these relationships are not adequately represented by the Hagen-Poiseulle equation, as is often claimed.


2021 ◽  
Vol 11 (22) ◽  
pp. 10708
Author(s):  
Adel Almoslh ◽  
Falah Alobaid ◽  
Christian Heinze ◽  
Bernd Epple

An experimental study was conducted in the sieve tray column to investigate the influence of gas flow rate on the hydrodynamic characteristics of the sieve tray, such as total tray pressure drop, wet tray pressure drop, dry tray pressure drop, clear liquid height, liquid holdup, and froth height. The hydrodynamic characteristics of the sieve tray were investigated for the gas/water system at different gas flow rates from 12 to 24 Nm3/h and at different pressures of 0.22, 0.24, and 0.26 MPa. In this study, a simulated waste gas was used that consisted of 30% CO2 and 70% air. The inlet volumetric flow rate of the water was 0.148 m3/h. The temperature of the inlet water was 19.5 °C. The results showed that the gas flow rate has a significant effect on the hydrodynamic characteristics of the tray. The authors investigated the effect of changing these hydrodynamic characteristics on the performance of a tray column used for CO2 capture.


Proceedings ◽  
2020 ◽  
Vol 42 (1) ◽  
pp. 42
Author(s):  
Victor Petrov ◽  
Alexandra Starnikova

This work shows the possibility of using arrays of ZnO nanorods grown on a glass substrate as a sensitive element for measuring air flow velocity. Since oxide semiconductors have a temperature dependence of resistance, a theoretical and experimental assessment was made of the influence of air velocity on the increase in resistance of a sensitive element. It has been theoretically shown that when air is blown through, the temperature of the free end of the ZnO nanorod can decrease by several degrees. An experimental evaluation showed that when gas is blown at a speed of 12.5 cm/s, the resistance of the sensing element increases by about 20%, which is equivalent to a temperature increase of about 4 degrees. In addition, it was found that the dependence of the increase in the resistance of the sensitive element when exposed to an air flow from 0 to 12.5 cm / s is close to linear.


2019 ◽  
Vol 3 (2) ◽  
pp. 57
Author(s):  
Éric Dumont

In this study, the Effectiveness-NTU method, which is usually applied to heat exchanger design, was adapted to gas–liquid countercurrent absorbers to determine the overall mass transfer coefficient, KLa, of the apparatus in operation. It was demonstrated that the ε-NTU method could be used to determine the KLa using the Henry coefficient of the solute to be transferred (HVOC), the gas flow-rate (QG), the liquid flow-rate (QL), the scrubber volume (V), and the effectiveness of the absorber (ε). These measures are calculated from the gaseous concentrations of the solute measured at the absorber inlet (CGin) and outlet (CGout), respectively. The ε-NTU method was validated from literature dedicated to the absorption of volatile organic compounds (VOCs) by heavy solvents. Therefore, this method could be a simple, robust, and reliable tool for the KLa determination of gas–liquid contactors in operation, despite the type of liquid used, i.e., water or viscous solvents.


Sign in / Sign up

Export Citation Format

Share Document