scholarly journals Double-well trap for charged microparticles

2021 ◽  
Vol 2103 (1) ◽  
pp. 012222
Author(s):  
Olga Kokorina ◽  
Vadim Rybin ◽  
Semyon Rudyi

Abstract We propose a double-well linear Paul trap for particle’s spatial selection according to the charge-to-mass ratio. To perform spatial selection we implemented an experimental setup that permits to detect particles’ positions in the double-well trap from three different view-points: top, front left, and front right. The setup gives an opportunity to monitor the particles’ axial density distribution in real-time. We have shown a strong correlation between axial position of separated localization areas and the DC voltages applied to the rod and end-cap electrodes. We have experimentally determined the critical localization parameters where double-well mode acquires for all the trapped charged microparticles. According to the experimental data and a numerical simulation a upper value of charge-to-mass ratio of the trapped microparticles was estimated.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mykhaylo Tkach ◽  
Serhii Morhun ◽  
Yuri Zolotoy ◽  
Irina Zhuk

AbstractNatural frequencies and vibration modes of axial compressor blades are investigated. A refined mathematical model based on the usage of an eight-nodal curvilinear isoparametric finite element was applied. The verification of the model is carried out by finding the frequencies and vibration modes of a smooth cylindrical shell and comparing them with experimental data. A high-precision experimental setup based on an advanced method of time-dependent electronic interferometry was developed for this aim. Thus, the objective of the study is to verify the adequacy of the refined mathematical model by means of the advanced time-dependent electronic interferometry experimental method. The divergence of the results of frequency measurements between numerical calculations and experimental data does not exceed 5 % that indicates the adequacy and high reliability of the developed mathematical model. The developed mathematical model and experimental setup can be used later in the study of blades with more complex geometric and strength characteristics or in cases when the real boundary conditions or mechanical characteristics of material are uncertain.


2008 ◽  
Vol 602 ◽  
pp. 209-218 ◽  
Author(s):  
J. J. J. GILLISSEN ◽  
B. J. BOERSMA ◽  
P. H. MORTENSEN ◽  
H. I. ANDERSSON

We use direct numerical simulation to study turbulent drag reduction by rigid polymer additives, referred to as fibres. The simulations agree with experimental data from the literature in terms of friction factor dependence on Reynolds number and fibre concentration. An expression for drag reduction is derived by adopting the concept of the elastic layer.


2008 ◽  
Vol 10 (1) ◽  
pp. 013004 ◽  
Author(s):  
G Huber ◽  
T Deuschle ◽  
W Schnitzler ◽  
R Reichle ◽  
K Singer ◽  
...  

SPE Journal ◽  
2013 ◽  
Vol 18 (03) ◽  
pp. 440-447 ◽  
Author(s):  
C.C.. C. Ezeuko ◽  
J.. Wang ◽  
I.D.. D. Gates

Summary We present a numerical simulation approach that allows incorporation of emulsion modeling into steam-assisted gravity-drainage (SAGD) simulations with commercial reservoir simulators by means of a two-stage pseudochemical reaction. Numerical simulation results show excellent agreement with experimental data for low-pressure SAGD, accounting for approximately 24% deficiency in simulated oil recovery, compared with experimental data. Incorporating viscosity alteration, multiphase effect, and enthalpy of emulsification appears sufficient for effective representation of in-situ emulsion physics during SAGD in very-high-permeability systems. We observed that multiphase effects appear to dominate the viscosity effect of emulsion flow under SAGD conditions of heavy-oil (bitumen) recovery. Results also show that in-situ emulsification may play a vital role within the reservoir during SAGD, increasing bitumen mobility and thereby decreasing cumulative steam/oil ratio (cSOR). Results from this work extend understanding of SAGD by examining its performance in the presence of in-situ emulsification and associated flow of emulsion with bitumen in porous media.


2013 ◽  
Vol 20 (5) ◽  
pp. 055706 ◽  
Author(s):  
Erik P. Gilson ◽  
Ronald C. Davidson ◽  
Philip C. Efthimion ◽  
Richard Majeski ◽  
Edward A. Startsev ◽  
...  

2000 ◽  
Author(s):  
Fahua Gu ◽  
Abraham Engeda ◽  
Mike Cave ◽  
Jean-Luc Di Liberti

Abstract A numerical simulation is performed on a single stage centrifugal compressor using the commercially available CFD software, CFX-TASCflow. The steady flow is obtained by circumferentially averaging the exit fluxes of the impeller. Three runs are made at design condition and off-design conditions. The predicted performance is in agreement with experimental data. The flow details inside the stationary components are investigated, resulting in a flow model describing the volute/diffuser interaction at design and off-design conditions. The recirculation and twin vortex structure are found to explain the volute loss increase at lower and higher mass flows, respectively.


1984 ◽  
Vol 49 (1) ◽  
pp. 170-178 ◽  
Author(s):  
Karel Klusáček

The method of numerical simulation of a catalytic system dynamics with lumped parameters is reported. Appropriate balance equations have been derived and suitable calculation procedures are discussed. Numerical example of simulation of the catalytic methanol dehydration dynamics is presented and calculated relaxation curves are compared with experimental data obtained earlier.


2014 ◽  
Vol 529 ◽  
pp. 102-107
Author(s):  
Hai Bo Luo ◽  
Ying Yan ◽  
Xiang Ji Meng ◽  
Tao Tao Zhang ◽  
Zu Dian Liang

A 7.8m/s vertical drop simulate of a full composite fuselage section was conducted with energy-absorbing floor to evaluate the crashworthiness features of the fuselage section and to predict its dynamic response to dummies in future. The 1.52m diameter fuselage section consists of a high strength upper fuselage frame, one stiff structural floor and an energy-absorbing subfloor constructed of Rohacell foam blocks. The experimental data from literature [6] were analyzed and correlated with predictions from an impact simulation developed using the nonlinear explicit transient dynamic computer code MSC.Dytran. The simulated average acceleration did not exceed 13g, by contrast with experimental results, whose relative error is less than 11%. The numerical simulation results agree with experiments well.


Sign in / Sign up

Export Citation Format

Share Document