scholarly journals Blending Ratio Effect of ZnPc/ZnO Hybrid Nanocomposite on Surface Morphology and Structural Properties

2021 ◽  
Vol 2114 (1) ◽  
pp. 012015
Author(s):  
K. F. Abbas ◽  
A. F. Abdulameer

Abstract Recently, organic/inorganic hybrid nanocomposites being the future in electronic applications. In this paper, we have investigated hybrid nanocomposite zinc phthalocyanine (ZnPc)/zinc oxide nanoparticles (ZnO). ZnPc/ZnO hybrid nanocomposites were prepared with different ratios (wt/wt) (1/0), (0/1), (0.75/0.25), (0.5/0.5), (0.25/0.75), and, deposited on glass substrates by spin coating technique. X-Ray diffraction investigate the structural of ZnPc/ZnO thin films and studied the morphological properties using field emission scan electron microscopy, the surface of ZnPc/ZnO hybrid nanocomposites shows the presence of nanorod-like structures represented the organic material (ZnPc) and spherical nanoparticles for (ZnO), that is depending on the ratio of the blend. In ratio (0.5/0.5) we get the preferred homogeneous surface between like-nanorod and spherical shapes were show various properties from pure compounds which used to prepare the blend. The distribution of ZnO nanoparticles on ZnPc particles nanorods led to the disappearance feature of ZnO morphological characterize and ZnPc decorated was dominated on the hybrid nanocomposite structure.

2015 ◽  
Vol 2 (1) ◽  
pp. 15-17
Author(s):  
Indira J

Hydroxyapatite (HAP) nanoparticles with uniform morphologies and controllable size have been synthesized by template directed method. The environment and eco-friendly polysaccharide soluble starch is used as a template to regulate size and shape of the nanoparticles synthesized. Structural and morphological properties of as-synthesized hydroxyapatite nanoparticles have been examined through the techniques like Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD) and Scanning Electron Microscopy(SEM), respectively. The results indicate that the obtained particles are uniform discrete spherical nanoparticles. The average size of the hydroxyapatite nanoparticles were ranged from 45 to 60 nm.


2021 ◽  
Vol 20 (1) ◽  
pp. 84-93
Author(s):  
Dumitru Rusnac ◽  
◽  
Ion Lungu ◽  
Lidia Ghimpu ◽  
Gleb Colibaba ◽  
...  

Doped (with GaCl 3 ), undoped ZnO and ITO/ZnO:Ga nanostructured thin films are synthesized using the spray pyrolysis method. The doped ZnO thin films are synthesized at the atomic ratio of Ga/Zn added in the starting solution fixed at 1, 2, 3, and 5. Gallium-doped ZnO films synthesized on glass/ITO substrates are annealed at 450C in different environments: vacuum, oxygen, and hydrogen. X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and current–voltage (I–V) measurements are applied to characterize the structural properties, composition, surface morphology, and electrical properties of ZnO:Ga nanostructured thin films. X-ray diffraction analysis shows that ZnO:Ga films deposited on glass substrates have a dense and homogeneous surface with a hexagonal structure. The ZnO:Ga films deposited on glass/ITO substrates are composed of two phases, namely, hexagonal ZnO and cubic ITO. The I–V characteristics show the presence of good ohmic contacts between Al and In metals and ZnO:Ga thin films regardless of the nature of the substrate and the annealing atmosphere.


2009 ◽  
Vol 1 (2) ◽  
pp. 18-20
Author(s):  
Dahyunir Dahlan

Copper oxide particles were electrodeposited onto indium tin oxide (ITO) coated glass substrates. Electrodeposition was carried out in the electrolyte containing cupric sulphate, boric acid and glucopone. Both continuous and pulse currents methods were used in the process with platinum electrode, saturated calomel electrode (SCE) and ITO electrode as the counter, reference and working electrode respectively. The deposited particles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that, using continuous current deposition, the deposited particles were mixture of Cu2O and CuO particles. By adding glucopone in the electrolyte, particles with spherical shapes were produced. Electrodeposition by using pulse current, uniform cubical shaped Cu2O particles were produced


2019 ◽  
Vol 15 (34) ◽  
pp. 1-14
Author(s):  
Bushra A. Hasan

Lead selenide PbSe thin films of different thicknesses (300, 500, and 700 nm) were deposited under vacuum using thermal evaporation method on glass substrates. X-ray diffraction measurements showed that increasing of thickness lead to well crystallize the prepared samples, such that the crystallite size increases while the dislocation density decreases with thickness increasing. A.C conductivity, dielectric constants, and loss tangent are studied as function to thickness, frequency (10kHz-10MHz) and temperatures (293K-493K). The conductivity measurements confirm confirmed that hopping is the mechanism responsible for the conduction process. Increasing of thickness decreases the thermal activation energy estimated from Arhinus equation is found to decrease with thickness increasing. The increase of thickness lead to reduce the polarizability α while the increasing of temperature lead to increase α.


Surfaces ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 106-114
Author(s):  
Yannick Hermans ◽  
Faraz Mehmood ◽  
Kerstin Lakus-Wollny ◽  
Jan P. Hofmann ◽  
Thomas Mayer ◽  
...  

Thin films of ZnWO4, a promising photocatalytic and scintillator material, were deposited for the first time using a reactive dual magnetron sputtering procedure. A ZnO target was operated using an RF signal, and a W target was operated using a DC signal. The power on the ZnO target was changed so that it would match the sputtering rate of the W target operated at 25 W. The effects of the process parameters were characterized using optical spectroscopy, X-ray diffraction, and scanning electron microscopy, including energy dispersive X-ray spectroscopy as well as X-ray photoelectron spectroscopy. It was found that stoichiometric microcrystalline ZnWO4 thin films could be obtained, by operating the ZnO target during the sputtering procedure at a power of 55 W and by post-annealing the resulting thin films for at least 10 h at 600 °C. As FTO coated glass substrates were used, annealing led as well to the incorporation of Na, resulting in n+ doped ZnWO4 thin films.


2015 ◽  
Vol 645-646 ◽  
pp. 1339-1344 ◽  
Author(s):  
Yan Ting Yin ◽  
Qing Hua Chen ◽  
Ting Ting Yan ◽  
Qing Hua Chen

The objective of this study was to develop a novel silica modified large-sized hydroxyapatite whiskers with improved properties for use in bone repair applications. Large-sized whiskers with a mean length of 250μm were obtained by a hydrothermal co-precipitation method at 150°C, 7.5Mpa in high-pressure reactor. Silica modified hydroxyapatite whiskers were prepared by dissolving TEOS in ethanol solution, then sintering with hydroxyapatite. The compositional and morphological properties of prepared whiskers were studied by means of x-ray diffraction (XRD), Fouier transform infrared (FT-IR), scanning electron microscopy (SEM). The results indicated the evidence of nanosilicon dioxide particles on the surface of HAP whiskers. The size of nanosilicon dioxide particles depends on dropping and stirring rate. Hence, this new type of silica modified large-sized hydroxyapatite whiskers is a valuable candidate for biomedical applications.Key words: hydroxyapatite, hydrothermal co-precipitation, surface modified, whiskers


Resources ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 63
Author(s):  
Khalil Ibrahim ◽  
Mohammad Moumani ◽  
Salsabeela Mohammad

A combined process is proposed for the utilization of local kaolin to produce alumina particles. The applied process is made in two stages: calcination at 700 °C with sodium chloride and leaching with sulfuric followed by hydrochloric acids. The optimal extraction efficiency can be obtained when the conditions are as follows: leaching temperature is at 140 °C, leaching time is 3 h 45 min and concentration of sulfuric acid is 40 wt.%. The results show that the purity of alumina reaches 79.28%, which is suitable for the production of aluminum metal. It is evident that this method of extraction of alumina from the kaolin ash is practical and feasible. The structural and morphological properties of the calcined microcrystalline powder was characterized by X-ray diffraction and scanning electron microscope (SEM).


2011 ◽  
Vol 1328 ◽  
Author(s):  
KyoungMoo Lee ◽  
Yoshio Abe ◽  
Midori Kawamura ◽  
Hidenobu Itoh

ABSTRACTCobalt hydroxide thin films with a thickness of 100 nm were deposited onto glass, Si and indium tin oxide (ITO)-coated glass substrates by reactively sputtering a Co target in H2O gas. The substrate temperature was varied from -20 to +200°C. The EC performance of the films was investigated in 0.1 M KOH aqueous solution. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy of the samples indicated that Co3O4 films were formed at substrate temperatures above 100°C, and amorphous CoOOH films were deposited in the range from 10 to -20°C. A large change in transmittance of approximately 26% and high EC coloration efficiency of 47 cm2/C were obtained at a wavelength of 600 nm for the CoOOH thin film deposited at -20°C. The good EC performance of the CoOOH films is attributed to the low film density and amorphous structure.


2018 ◽  
Vol 788 ◽  
pp. 102-107
Author(s):  
Pavels Rodionovs ◽  
Jānis Grabis ◽  
Aija Krūmiņa

In order to improve TiO2 photocatalytic activity ZnFe2O4/TiO2 nanocomposites with different ZnFe2O4 mass loading were produced. Obtained ZnFe2O4 nanoparticles were coupled with TiO2 via microwave-assisted hydrothermal method in order to improve photon absorption in a range of visible light. Prepared nanostructures were characterized with scanning electron microscopy and X-ray diffraction. Photocatalytic activity of prepared samples was investigated by degradation of methylene blue under different light sources – LED, Hg and Osram Vitalux lamps. ZnFe2O4 consists of spherical nanoparticles with average size of 15 nm. TiO2 spherical nanoparticles size is in a range of 30÷45 nm. The results show that doping TiO2 with ZnFe2O4 nanoparticles increases photocatalytic activity. Photocatalytic activity increases as mass loading of ZnFe2O4 decreases.


2011 ◽  
Vol 43 (1) ◽  
pp. 105-112
Author(s):  
Z.G. Zhang ◽  
X.F. Wang ◽  
Q.Q. Tian

Bismuth silicate micro-crystals with grain array structure were prepared by sintering method under atmosphere pressure. The samples were characterized for structural and surface morphological properties by X-ray diffraction (XRD) and Environmental scanning electron microscopy (ESEM). The result shows that stable grain arrays grow by iterative mode. If a stable grain array eliminates, a new stable grain array will generate. In a stable parent array, an offspring array may generate after the corresponding partial elimination of its parent array. If one part of an offspring array stops growing, it will be as a new parent array, and then its offspring grain array will create. The sum of the lengths of an offspring array and the corresponding eliminated part of its parent array is equal to the length of the next eliminated part of its parent array. It means the growth rate of an offspring array is equal to that of the corresponding survived part of its parent array. There is a highly correlation between grain array length and average grain line spacing. It means that larger average grain line spacing corresponds to the stable grain array with lager length. When average grain line spacing increases 1?m, the corresponding array length will increase approximately 7.6?m.


Sign in / Sign up

Export Citation Format

Share Document