scholarly journals An experimental study of the temperature evolution of a single fin submerged in a phase changing material during melting at different heat fluxes

2021 ◽  
Vol 2116 (1) ◽  
pp. 012047
Author(s):  
R Tassenoy ◽  
W Beyne ◽  
W Plas ◽  
S Lecompte ◽  
M De Paepe

Abstract An experimental setup has been designed to study a single cylindrical fin placed in a cylindrical enclosure filled with phase changing material (PCM). The heat flux to the fin is measured at the top of the fin. The temperature evolution at different fin heights is measured by thermocouples placed internally in the fin. The evolution of these temperatures has been studied for different heat fluxes. This provides insight in the contribution of the different fin heights to the total heat transfer to the PCM during the different stages of the melting process. As such they can be used to assess the effectiveness of the fin over its length. After approximately 6h, the fin temperature stabilizes during melting. Due to the temperature drop over the fin, the bottom temperature reached is significantly lower than the temperature at the top and the contribution of this lower part to the total heat transfer is lower as well. For heat fluxes higher than 3805±75 W/m2, the steady-state temperatures at fin locations in contact with the melting PCM are similar. For low heat fluxes, this steady-state temperature is not reached during a 12h experiment. Longer experiments are thus needed to study the steady-state behaviour at these lower heat fluxes.

2003 ◽  
Vol 31 (3) ◽  
pp. 233-244
Author(s):  
Antonio Campo ◽  
Francisco Alhama

Evaluation of spatio-temporal temperatures and total heat transfer rates in simple bodies (large plate, long cylinder and sphere) has been traditionally explained in undergraduate courses of heat transfer by the Heisler/Gröber or by the Boelter/Gröber charts. These three charts pose some restrictions with respect to the applicable times. Additionally, the charts do not provide information about the time-dependent heat fluxes at the surface. Conversely, evaluation of spatio-temporal temperatures, time-dependent heat fluxes at the surface and total heat transfer rates can be easily done for the entire time domain with the network simulation method (NSM) in conjunction with the commercial code PSPICE. NSM relies on the existing physical analogy between the unsteady transport of electric current and the unsteady transport of unidirectional heat by conduction. This analogy has been named the RC analogy in the specialized literature. The code PSPICE simulates the electric circuits for a specific body together with the imposed boundary and initial conditions, and produces numerical results for the quantities of interest, such as: the spatio-temporal temperature distributions; the time-dependent heat flux distributions at the surface; and the total heat transfer.


Author(s):  
Like Li ◽  
Renwei Mei ◽  
James F. Klausner

The evaluation of the boundary heat flux and total heat transfer in the lattice Boltzmann equation (LBE) simulations is investigated. The boundary heat fluxes in the discrete velocity directions of the thermal LBE (TLBE) model are obtained directly from the temperature distribution functions at the lattice nodes. With the rectangular lattice uniformly spaced the effective surface area for the discrete heat flux is the unit spacing distance, thus the heat flux integration becomes simply a summation of all the discrete heat fluxes with constant surface areas. The present method for the evaluation of total heat transfer is very efficient and robust for curved boundaries because it does not require the determination of the normal heat flux on the boundary and the surface area. To validate its applicability and accuracy, several numerical tests with analytical solutions are conducted, including 2-dimensional (2D) steady thermal flow in a channel, 1-D transient heat conduction in an inclined semi-infinite solid, 2-D transient conduction inside a circle, and 3-D steady thermal flow in a circular pipe. For straight boundaries perpendicular to one of the discrete velocity vectors, the total heat transfer is second-order accurate. For curved boundaries only first-order accuracy is obtained for the total heat transfer due to the irregularly distributed lattice fractions cut by the curved boundary.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 200
Author(s):  
Lingyun Zhang ◽  
Yupeng Hu ◽  
Minghai Li

This study examines the combined heat transfer by thermal conduction, natural convection and surface radiation in the porous char layer that is formed from the intumescent coating under fire. The results show that some factors, such as the Rayleigh number, conductivity ratio, emissivity, radiation–conduction number, void fraction and heating mode have a certain effect on the total heat transfer. In addition, the natural convection of the air in the cavity always inhibits surface radiation among the solid walls and thermal conduction, and the character of the total heat transfer is the competition result of the three heat transfer mechanisms.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Paul M. Kodzwa ◽  
John K. Eaton

This paper presents isoenergetic temperature and steady-state film-cooled heat transfer coefficient measurements on the pressure surface of a modern, highly cambered transonic airfoil. A single passage model simulated the idealized two-dimensional flow path between blades in a modern transonic turbine. This set up offered a simpler construction than a linear cascade but produced an equivalent flow condition. Furthermore, this model allowed the use of steady-state, constant surface heat fluxes. We used wide-band thermochromic liquid crystals (TLCs) viewed through a novel miniature periscope system to perform high-accuracy (±0.2 °C) thermography. The peak Mach number along the pressure surface was 1.5, and maximum turbulence intensity was 30%. We used air and carbon dioxide as injectant to simulate the density ratios characteristic of the film cooling problem. We found significant differences between isoenergetic and recovery temperature distributions with a strongly accelerated mainstream and detached coolant jets. Our heat transfer data showed some general similarities with lower-speed data immediately downstream of injection; however, we also observed significant heat transfer attenuation far downstream at high blowing conditions. Our measurements suggested that the momentum ratio was the most appropriate variable to parameterize the effect of injectant density once jet lift-off occurred. We noted several nonintuitive results in our turbulence effect studies. First, we found that increased mainstream turbulence can be overwhelmed by the local augmentation of coolant injection. Second, we observed complex interactions between turbulence level, coolant density, and blowing rate with an accelerating mainstream.


2018 ◽  
Vol 22 (2) ◽  
pp. 899-897
Author(s):  
Xiaohong Gui ◽  
Xiange Song ◽  
Baisheng Nie

The effects of contact angle and superheat on thin-film thickness and heat flux distribution occurring in a rectangle microgroove are numerically simulated. Accordingly, physical, and mathematical models are built in detail. Numerical results indicate that meniscus radius and thin-film thickness increase with the improvement of contact angle. The heat flux distribution in the thin-film region increases non-linearly as the contact angle decreases. The total heat transfer through the thin-film region increases with the improvement of superheat, and decreases as the contact angle increases. When the contact angle is equal to zero, the heat transfer in the thin-film region accounts for more than 80% of the total heat transfer. Intensive evaporation in the thin-film region plays a key role in heat transfer for the rectangle capillary microgroove. The liquid with higher wetting performance is more capable of playing the advantages of higher intensity heat transfer in thin- film region. The current investigation will result in a better understanding of thin- -film evaporation and its effect on the effective thermal conductivity in the rectangle microgroove.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Jianliang Xue ◽  
Qinqin Cui ◽  
Jie Ming ◽  
Yu Bai ◽  
Lin Li

Theoretical investigations on thermal properties of multieffect distillation (MED) are presented to approach lower capital costs and more distillated products. A mathematical model, based on the energy and mass balance, is developed to (i) evaluate the influences of variations in key parameters (effect numbers, evaporation temperature in last effect, and feed salinity) on steam consumption, gained output ratio (GOR), and total heat transfer areas of MED and (ii) compare two operation modes (backward feed (BF) and forward feed (FF) systems). The result in the first part indicated that GOR and total heat transfer areas increased with the effect numbers. Also, higher effect numbers result in the fact that the evaporation temperature in last effect has slight influence on GOR, while it influences the total heat transfer areas remarkably. In addition, an increase of feed salinity promotes the total heat transfer areas but reduces GOR. The analyses in the second part indicate that GOR and total heat transfer areas of BF system are higher than those in FF system. One thing to be aware of is that the changes of steam consumption can be omitted, considering that it shows an opposite trend to GOR.


2005 ◽  
Vol 127 (2) ◽  
pp. 179-188 ◽  
Author(s):  
Devashish Shrivastava ◽  
Benjamin McKay ◽  
Robert B. Roemer

Counter-current (vessel–vessel) heat transfer has been postulated as one of the most important heat transfer mechanisms in living systems. Surprisingly, however, the accurate quantification of the vessel–vessel, and vessel–tissue, heat transfer rates has never been performed in the most general and important case of a finite, unheated/heated tissue domain with noninsulated boundary conditions. To quantify these heat transfer rates, an exact analytical expression for the temperature field is derived by solving the 2-D Poisson equation with uniform Dirichlet boundary conditions. The new results obtained using this solution are as follows: first, the vessel–vessel heat transfer rate can be a large fraction of the total heat transfer rate of each vessel, thus quantitatively demonstrating the need to accurately model the vessel–vessel heat transfer for vessels imbedded in tissues. Second, the vessel–vessel heat transfer rate is shown to be independent of the source term; while the heat transfer rates from the vessels to the tissue show a significant dependence on the source term. Third, while many previous studies have assumed that (1) the total heat transfer rate from vessels to tissue is zero, and/or (2) the heat transfer rates from paired vessels (of different sizes and at different temperatures) to tissue are equal to each other the current analysis shows that neither of these conditions is met. The analytical solution approach used to solve this two vessels problem is general and can be extended for the case of “N” arbitrarily located vessels.


Sign in / Sign up

Export Citation Format

Share Document