scholarly journals Ejector refrigeration: perspectives and comparative analysis

2021 ◽  
Vol 2116 (1) ◽  
pp. 012090
Author(s):  
Giorgio Besagni ◽  
Lorenzo Croci ◽  
Paolo Bellasio ◽  
Luigi Pietro Maria Colombo

Abstract Within the broader discussion regarding the decarbonisation of the household sector, ejector refrigeration is attracting a growing attention. This communication contributes to the present day discussion concerning the performances and the perspectives in ejector refrigeration systems. Based on a very large dataset, gathered from the previous literature (encompassing a wide range of system design, operating conditions and refrigerants), this paper proposes a comprehensive comparative analysis. First, the current trends in ejector refrigeration systems, refrigerants and performances are presented. Second, the relationships between ejector performances, refrigerants and boundary conditions (in terms of non-dimensional temperatures, to ensure generality of the proposed analysis) are presented. In conclusion, this paper is intended to provide guidelines for perspective researchers and practitioners interested in selecting suitable ejector-based systems.

1988 ◽  
Vol 25 (02) ◽  
pp. 75-104
Author(s):  
William J. Sembler

To a pump manufacturer, marine cargo service represents one of the most demanding applications for which he can design and furnish equipment. In addition to being subjected to the stresses encountered in a shipboard environment, cargo pumps must often perform over a wide range of operating conditions and handle multiple fluids with different viscosities, vapor pressures, specific gravities, temperatures, and material requirements. In this paper the author reviews characteristics of the different types of pumps used for marine cargo service, with an emphasis on the special features that should be incorporated into their design for this rigorous duty. Different types of automatic self-priming/stripping systems available for use with these cargo pumps are also examined. Pump operation is discussed, including the significant impact that system design has on proper pump performance.


2022 ◽  
Vol 2150 (1) ◽  
pp. 012001
Author(s):  
S G Skripkin ◽  
D A Suslov ◽  
I V Litvinov ◽  
E U Gorelikov ◽  
M A Tsoy ◽  
...  

Abstract This article presents a comparative analysis of flow characteristics behind a hydraulic turbine runner in air and water. Swirling flow with a precessing vortex core (PVC) was investigated using a laser Doppler anemometer and pressure pulsation sensors. The experiments were conducted on aerodynamic and hydrodynamic test rigs over a wide range of hydraulic turbine operating conditions. Part-load modes of hydraulic turbine operation were investigated using the Fourier transform of pressure pulsations obtained from acoustic sensors. The features of the swirling flow were shown for the range of operating conditions from deep partl-load to overload.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6173
Author(s):  
Linda Barelli ◽  
Gianni Bidini ◽  
Giovanni Cinti

Ammonia has strong potentialities as sustainable fuel for energy applications. NH3 is carbon free and can be synthetized from renewable energy sources (RES). In Solid Oxide Fuel Cells, NH3 reacts electrochemically thereby avoiding the production of typical combustion pollutants such as NOx. In this study, an ammonia-fueled solid oxide fuel cells (SOFC) system design is proposed and a thermodynamic model is developed to evaluate its performance. A SOFC short stack was operated with NH3 in a wide range of conditions. Experimental results are implemented in the thermodynamic model. Electrical efficiency of 52.1% based on ammonia Lower Heating Value is calculated at a net power density of 0.36 W cmFC−2. The operating conditions of the after burner and of the ammonia decomposition reactor are studied by varying the values of specific parameters. The levelized cost of energy of 0.221 $ kWh−1 was evaluated, as introduced by the International Energy Agency, for a system that operates at nominal conditions and at a reference power output of 100 kW. This supports the feasibility of ammonia-fueled SOFC systems with reference to the carbon free energy market, specifically considering the potential development of green ammonia production.


2005 ◽  
Vol 128 (5) ◽  
pp. 1141-1158 ◽  
Author(s):  
Andrzej Kawalec ◽  
Jerzy Wiktor ◽  
Dariusz Ceglarek

Current trends in engineering globalization require researchers to revisit various normalized standards that determine “best practices” in industries. This paper presents comparative analysis of tooth-root strength evaluation methods used within ISO and AGMA standards and verifying them with developed models and simulations using the finite element method (FEM). The presented analysis is conducted for (1) wide range of spur and helical gears manufactured using racks or gear tools; and for (2) various combinations of key geometrical (gear design), manufacturing (racks and gear tools), and performance (load location) parameters. FEM of tooth-root strength is performed for each modeled gear. FEM results are compared with stresses calculated based on the ISO and AGMA standards. The comparative analysis for various combinations of design, manufacturing, and performance parameters are illustrated graphically and discussed briefly. The results will allow for a better understanding of existing limitations in the current standards applied in engineering practice as well as provide a basis for future improvements and/or unifications of gear standards.


1988 ◽  
Vol 25 (01) ◽  
pp. 1-29
Author(s):  
William J. Sembler

To a pump manufacturer, marine cargo service represents one of the most demanding applications for which he can design and furnish equipment. In addition to being subjected to the stresses encountered in a shipboard environment, cargo pumps must often perform over a wide range of operating conditions and handle multiple fluids with different viscosities, vapor pressures, specific gravities, temperatures, and material requirements. In this paper the author reviews characteristics of the different types of pumps used for marine cargo service, with an emphasis on the special features that should be incorporated into their design for this rigorous duty. Different types of automatic self-priming/stripping systems available for use with these cargo pumps are also examined. Pump operation is discussed, including the significant impact that system design has on proper pump performance. (Because this paper is too large for publication in a single issue, Part II, on other types of cargo pumps, will appear in the next issue of MT, April 1988.)


Author(s):  
David A. Ansley

The coherence of the electron flux of a transmission electron microscope (TEM) limits the direct application of deconvolution techniques which have been used successfully on unmanned spacecraft programs. The theory assumes noncoherent illumination. Deconvolution of a TEM micrograph will, therefore, in general produce spurious detail rather than improved resolution.A primary goal of our research is to study the performance of several types of linear spatial filters as a function of specimen contrast, phase, and coherence. We have, therefore, developed a one-dimensional analysis and plotting program to simulate a wide 'range of operating conditions of the TEM, including adjustment of the:(1) Specimen amplitude, phase, and separation(2) Illumination wavelength, half-angle, and tilt(3) Objective lens focal length and aperture width(4) Spherical aberration, defocus, and chromatic aberration focus shift(5) Detector gamma, additive, and multiplicative noise constants(6) Type of spatial filter: linear cosine, linear sine, or deterministic


2020 ◽  
pp. 39-48
Author(s):  
B. O. Bolshakov ◽  
◽  
R. F. Galiakbarov ◽  
A. M. Smyslov ◽  
◽  
...  

The results of the research of structure and properties of a composite compact from 13 Cr – 2 Мо and BN powders depending on the concentration of boron nitride are provided. It is shown that adding boron nitride in an amount of more than 2% by weight of the charge mixture leads to the formation of extended grain boundary porosity and finely dispersed BN layers in the structure, which provides a high level of wearing properties of the material. The effect of boron nitride concentration on physical and mechanical properties is determined. It was found that the introduction of a small amount of BN (up to 2 % by weight) into the compacts leads to an increase in plasticity, bending strength, and toughness by reducing the friction forces between the metal powder particles during pressing and a more complete grain boundary diffusion process during sintering. The formation of a regulated structure-phase composition of powder compacts of 13 Cr – 2 Mо – BN when the content of boron nitride changes in them allows us to provide the specified physical and mechanical properties in a wide range. The obtained results of studies of the physical and mechanical characteristics of the developed material allow us to reasonably choose the necessary composition of the powder compact for sealing structures of the flow part of steam turbines, depending on their operating conditions.


1984 ◽  
Vol 19 (1) ◽  
pp. 87-100
Author(s):  
D. Prasad ◽  
J.G. Henry ◽  
P. Elefsiniotis

Abstract Laboratory studies were conducted to demonstrate the effectiveness of diffused aeration for the removal of ammonia from the effluent of an anaerobic filter treating leachate. The effects of pH, temperature and air flow on the process were studied. The coefficient of desorption of ammonia, KD for the anaerobic filter effluent (TKN 75 mg/L with NH3-N 88%) was determined at pH values of 9, 10 and 11, temperatures of 10, 15, 20, 30 and 35°C, and air flow rates of 50, 120, and 190 cm3/sec/L. Results indicated that nitrogen removal from the effluent of anaerobic filters by ammonia desorption was feasible. Removals exceeding 90% were obtained with 8 hours aeration at pH of 10, a temperature of 20°C, and an air flow rate of 190 cm3/sec/L. Ammonia desorption coefficients, KD, determined at other temperatures and air flow rates can be used to predict ammonia removals under a wide range of operating conditions.


2021 ◽  
Vol 13 (15) ◽  
pp. 8620
Author(s):  
Sanaz Salehi ◽  
Kourosh Abdollahi ◽  
Reza Panahi ◽  
Nejat Rahmanian ◽  
Mozaffar Shakeri ◽  
...  

Phenol and its derivatives are hazardous, teratogenic and mutagenic, and have gained significant attention in recent years due to their high toxicity even at low concentrations. Phenolic compounds appear in petroleum refinery wastewater from several sources, such as the neutralized spent caustic waste streams, the tank water drain, the desalter effluent and the production unit. Therefore, effective treatments of such wastewaters are crucial. Conventional techniques used to treat these wastewaters pose several drawbacks, such as incomplete or low efficient removal of phenols. Recently, biocatalysts have attracted much attention for the sustainable and effective removal of toxic chemicals like phenols from wastewaters. The advantages of biocatalytic processes over the conventional treatment methods are their ability to operate over a wide range of operating conditions, low consumption of oxidants, simpler process control, and no delays or shock loading effects associated with the start-up/shutdown of the plant. Among different biocatalysts, oxidoreductases (i.e., tyrosinase, laccase and horseradish peroxidase) are known as green catalysts with massive potentialities to sustainably tackle phenolic contaminants of high concerns. Such enzymes mainly catalyze the o-hydroxylation of a broad spectrum of environmentally related contaminants into their corresponding o-diphenols. This review covers the latest advancement regarding the exploitation of these enzymes for sustainable oxidation of phenolic compounds in wastewater, and suggests a way forward.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tingting Du ◽  
Zixin Xiong ◽  
Luis Delgado ◽  
Weizhi Liao ◽  
Joseph Peoples ◽  
...  

AbstractThermal switches have gained intense interest recently for enabling dynamic thermal management of electronic devices and batteries that need to function at dramatically varied ambient or operating conditions. However, current approaches have limitations such as the lack of continuous tunability, low switching ratio, low speed, and not being scalable. Here, a continuously tunable, wide-range, and fast thermal switching approach is proposed and demonstrated using compressible graphene composite foams. Large (~8x) continuous tuning of the thermal resistance is achieved from the uncompressed to the fully compressed state. Environmental chamber experiments show that our variable thermal resistor can precisely stabilize the operating temperature of a heat generating device while the ambient temperature varies continuously by ~10 °C or the heat generation rate varies by a factor of 2.7. This thermal device is promising for dynamic control of operating temperatures in battery thermal management, space conditioning, vehicle thermal comfort, and thermal energy storage.


Sign in / Sign up

Export Citation Format

Share Document