scholarly journals The unsteady swirling jet in a model of radial burner

2021 ◽  
Vol 2119 (1) ◽  
pp. 012106
Author(s):  
I V Litvinov ◽  
E U Gorelikov ◽  
S I Shtork

Abstract The experimental study of an isothermal swirl flow with the formation of a precessing vortex core in the radial swirler upon non-confinement and confinement conditions is carried out. Velocity profiles are obtained with varying Re and guide vane angle, changing the swirl number S. Four acoustic sensors and LDA system are used to measure Strouhal number as the function of the integral swirl number in the range from 0.5 <S <0.8. It is shown that the unsteady flow with PVC effect significantly changes upon non-confinement and confinement conditions.

2015 ◽  
Vol 780 ◽  
pp. 45-59 ◽  
Author(s):  
T. A. Grimble ◽  
A. Agarwal

The hydrodynamic oscillations of a cyclone separator – in particular the precessing vortex core (PVC) phenomena – are investigated by measuring their radiated sound spectra. Strong coherence was observed between internal flow oscillations measured via hot wire anemometry and the external acoustic field measured via microphone. This means that the oscillations can be characterised by using acoustics as a proxy. The oscillations cause narrow-band noise, referred to as cyclone hum. System characterisation by dimensional analysis used velocity and length scales of the vortex core region as scaling parameters. The relevant non-dimensional parameters are a Strouhal number for the cyclone hum centre frequency, a Reynolds number, a geometry based swirl number and numerous geometric scales defining the shape of the device. Cyclones with multiple sizes of inlets and outlets were tested at different flow rates using external microphones to detect the cyclone hum. The results produce an excellent collapse of the data, yielding a simple relationship for Strouhal number as a function of swirl number and the outlet diameter ratio. The non-invasive method of examining oscillations that is presented in this paper could be applied to other swirling systems.


2019 ◽  
Vol 196 ◽  
pp. 00032
Author(s):  
Roman Yusupov ◽  
Ivan Litvinov ◽  
Sergey Shtork

This work is devoted to the study of unsteady flow with the precessing vortex core (PVC) formed at the exit of a compact vane swirler with varying vanes angle and nozzles diameters. Amplitude-frequency characteristics of the PVC were obtained using two microphones. The modified Strouhal number dependence have showed a good generalization of the data for all nozzle diameters. The averaged and phase-averaged distributions of three components of velocity have been measured via the LDA system. The increasing the recirculation zone at increasing nozzle diameter for the swirl parameter Sg=0.53 and Re=1.5·104 was detected. The degeneration of PVC was detected for all studied nozzle diameters D = 30, 40, 50 mm. In case of smallest diameter D = 30 mm the PVC ceases to be periodic due to the absence of a recirculation zone. The three-dimensional structure of the PVC is reconstructed by the phase averaging method and visualized using the Q-criterion. Formation of the shifted recirculation zone, outer secondary vortex (OSV) and inner secondary vortex (ISV) is observed.


Author(s):  
P Yazdabadi ◽  
A J Griffiths ◽  
N Syred

Experimental investigations have been carried out to examine the effect of downstream pipework configurations on the precessing vortex core (PVC) generated within the exhaust region of a cyclone dust separator. Characterization of the PVC using a non-dimensionalized frequency parameter (NDFP) was used to determine the relationship between Reynolds number and geometrical swirl number of the cyclone. The results show that the NDFP tends towards an asymptotic value for Reynolds numbers of about 50 000 and high swirl numbers (> 3.043). This value is reached earlier with lower swirl numbers. It was concluded that any exhaust pipework configuration produced a significant drop in the PVC frequency, and certain configurations either delayed or promoted the development of the PVC.


Author(s):  
Daisy Galeana ◽  
Asfaw Beyene

Experimental study of a swirl flow using 3-D Stereo-PIV (Particle Image Velocimetry) that models a gas turbine blade internal cooling configuration is presented. The work is intended to provide an understanding of the advancements of swirl cooling flow methodology utilizing 3-D Stereo-PIV. The study aims at determining the critical swirl number that has the potential to deliver the maximum heat transfer results. In the swirl cooling flow methodology, cooling air is routed to the turbine blades where it passes through the blade’s internal passages lowering the temperature. An experimental setup with seven discrete tangential jets at three different Reynolds numbers is designed to allow detail measurements of the flow. To provide the particles for velocity measurements an oil particle seeder (LAVision) is used. The circular chamber is made of clear acrylic to allow visualization of the flow phenomena. Data is post-processed in DaVis, velocity calculations are conducted in MATLAB, and TechPlot is used for data visualization. This investigation focuses on the continuous swirl flow that must be maintained via continuous injection of tangential flow, where swirl flow is generated with seven inlets and decays with downstream distance. It was also determined that the critical swirl number, Sn, depends greatly on the location and size of the tangential slots.


Author(s):  
Ranga Dinesh ◽  
Karl Jenkins ◽  
Michael Kirkpatrick

Large eddy simulations (LES) of turbulent isothermal swirling flows have been investigated. The Sydney swirl burner configuration has been used for all simulated test cases from a low to a high swirl and Reynolds numbers. Four test cases based on different swirl numbers have been considered and the influence of the swirl number for producing recirculation, vortex breakdown, precession vortex core and the precession frequencies have been investigated. The governing equations for the continuity and momentum are solved on a structured Cartesian grid, and a Smagorinsky eddy viscosity model with the localised dynamic procedure is used as the subgrid scale turbulence model. The results show that the LES successfully predicts both the upstream first recirculation zone generated by the bluff body and the downstream vortex breakdown bubble (VBB) induced by swirl. The plots reveal that the expansion of the upstream recirculation zone is almost similar for each test case. LES results revealed that the increasing swirl number affect to form the VBB in the downstream region, however it promotes the shear layer instability in the recirculation zones. The frequency spectrums indicate the presence of low frequency oscillations and the existence of a central jet precession. Results demonstrated distinct precession frequencies at the considered spatial jet locator and agreed well with the experimental values. The results also highlight the formation of a precessing vortex core (PVC).


2021 ◽  
Author(s):  
Finn Lueckoff ◽  
Christian Oliver Paschereit ◽  
Kilian Oberleithner ◽  
Moritz Sieber

2015 ◽  
Vol 92 ◽  
pp. 02107
Author(s):  
Alexey Vinokurov ◽  
Sergey Shtork ◽  
Sergey Alekseenko

Author(s):  
Amir Allaf-Akbari ◽  
A. Gordon L. Holloway ◽  
Joseph Hall

The current experimental study investigates the effect of longitudinal core flow on the formation and structure of a trailing vortex. The vortex is generated using four airfoils connected to a central hub through which a jet flow is added to the vortex core. Time averaged vorticity, circumferential velocity, and turbulent kinetic energy are studied. The statistics of vortex wandering are identified and corrections applied to the vorticity distribution. The vortex generator used in this study was built on the basis of the design described by Beninati et al. [1]. It uses four NACA0012 airfoils connected to a central hub. The wings orientation can be adjusted such that each contributes to a strong trailing vortex on the center of the test section. The vortex generator also had the capability to deliver an air jet directed longitudinally through a hole in the hub at the joint of the airfoils. Tests were done without the jet and with the air jet at jet velocities of 10 and 20 m/s. Planar PIV was used to measure the velocity field in the vicinity of the vortex core. The measurements were taken at 3 chords behind the vortex generator.


2021 ◽  
Author(s):  
Arnab Mukherjee ◽  
Nishanth Muthichur ◽  
Chaitali More ◽  
Saarthak Gupta ◽  
Santosh Hemchandra

Author(s):  
Mark Frederick ◽  
Kiran Manoharan ◽  
Joshua Dudash ◽  
Brian Brubaker ◽  
Santosh Hemchandra ◽  
...  

Combustion instability, the coupling between flame heat release rate oscillations and combustor acoustics, is a significant issue in the operation of gas turbine combustors. This coupling is often driven by oscillations in the flow field. Shear layer roll-up, in particular, has been shown to drive longitudinal combustion instability in a number of systems, including both laboratory and industrial combustors. One method for suppressing combustion instability would be to suppress the receptivity of the shear layer to acoustic oscillations, severing the coupling mechanism between the acoustics and the flame. Previous work suggested that the existence of a precessing vortex core (PVC) may suppress the receptivity of the shear layer, and the goal of this study is to first, confirm that this suppression is occurring, and second, understand the mechanism by which the PVC suppresses the shear layer receptivity. In this paper, we couple experiment with linear stability analysis to determine whether a PVC can suppress shear layer receptivity to longitudinal acoustic modes in a nonreacting swirling flow at a range of swirl numbers. The shear layer response to the longitudinal acoustic forcing manifests as an m = 0 mode since the acoustic field is axisymmetric. The PVC has been shown both in experiment and linear stability analysis to have m = 1 and m = −1 modal content. By comparing the relative magnitude of the m = 0 and m = −1,1 modes, we quantify the impact that the PVC has on the shear layer response. The mechanism for shear layer response is determined using companion forced response analysis, where the shear layer disturbance growth rates mirror the experimental results. Differences in shear layer thickness and azimuthal velocity profiles drive the suppression of the shear layer receptivity to acoustic forcing.


Sign in / Sign up

Export Citation Format

Share Document